
Installing SW4 version 2.0

N. Anders Petersson∗ Björn Sjögreen∗

November 6, 2017

Contents

1 Introduction 1

2 Compilers and third party libraries 2

3 Unpacking the source code tar ball 4

4 Installing SW4 with make 4
4.1 Basic compilation and linking of SW4 . 5

4.1.1 Mac machines . 5
4.1.2 Linux machines . 5
4.1.3 Using make . 6
4.1.4 How do I setup the make.inc file? . 7

4.2 Building SW4 with proj.4 and/or efile support . 7
4.3 Testing the SW4 installation . 8

5 Installing SW4 with CMake 9
5.1 CMake Options . 9
5.2 CTest . 11

6 Installing the proj.4, euclid, and cencalvm packages 12

7 Disclaimer 13

1 Introduction

The sole purpose of this document is to describe the installation process of the seismic wave prop-
agation code SW4. A comprehensive user’s guide is provided in the report by Petersson and
Sjogreen [1].

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, PO Box 808, Livermore CA
94551. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344. This is contribution LLNL-SM-741310.

1

2 Compilers and third party libraries

Before you can build SW4 on your system, you must have

1. the lapack and blas libraries. These libraries provide basic linear algebra functionality and
are pre-installed on many machines;

2. a MPI-2 library. This library provides support for message passing on parallel machines.
Examples of open source implementations include Mpich-2 and OpenMPI. Note that the
MPI-2 library must be installed even if you are only building SW4 for a single core system.

To avoid incompatibility issues and linking problems, we recommend using the same compiler for
the libraries as for SW4.

In order to use geographic projection and material models stored in the rfile format, you need
to install the Proj4 before building SW4 :

• The Proj.4 library, http://trac.osgeo.org/proj

If you also wish to use material models using the efile format, you also need to download and install
two additional libraries:

• The Euclid e-tree library, http://www-2.cs.cmu.edu/ euclid

• The cencalvm library,
http://earthquake.usgs.gov/data/3dgeologic/cencalvm doc/index.html

To simplify the build process, all libraries should be installed under the same directory, such that
the library files (.so, .a, etc.) are in the lib sub-directory and the include files (.h) end up in the
include sub-directory. See Section 6 for details.

Mac computers We recommend using the MacPorts package manager for installing the required
compilers and libraries. Simply go to www.macports.org, and install macports on your system.
With that in place, you can use the port command as follows

shell> sudo port install gcc72

shell> sudo port select --set gcc mp-gcc72

shell> sudo port install mpich-gcc7

shell> sudo port select --set mpi mpich-gcc7

Here, gcc72 refers to version 7.2 of the Gnu compiler suite. Compiler versions are bound to change
in the future, so the above commands will need to be modified accordingly. Before starting, make
sure you install a version of gcc that is compatible with the MPI library package. The above
example installs the mpich package using the gcc72 compilers, which includes a compatible Fortran
compiler. Alternatively, you can use the openmpi package. Note that the port select commands
are used to create shortcuts to the compilers and MPI environment. By using the above setup,
the Gnu compilers can be accessed with gcc and gfortran commands, and the MPI compilers and
execution environment are called mpicxx, mpif90, and mpirun, respectively.

The lapack and blas libraries are preinstalled on recent Macs and can be accessed using the
-framework Accelerate link option. If that is not available or does not work on your machine,
you can download lapack and blas from www.netlib.org.

2

Linux machines We here give detailed instructions for installing the third part libraries under
64 bit, Fedora Core 18 Linux. Other Linux variants use similar commands for installing software
packages, but note that the package manager yum is specific to Fedora Core.

You need to have root privileges to install precompiled packages. Start by opening an xterm
and set your user identity to root by the command

su -

Install the compilers by issuing the commands

yum install gcc

yum install gcc-c++

yum install gcc-gfortran

You install the mpich2 library and include files with the command

yum install mpich2-devel

The executables and libraries are installed in /usr/lib64/mpich2/bin and /usr/lib64/mpich2/lib

respectively. We suggest that you add /usr/lib64/mpich2/bin to your path. This is done with
the command

export PATH=${PATH}:/usr/lib64/mpich2/bin

if your shell is bash. For tcsh users, the command is

setenv PATH ${PATH}:/usr/lib64/mpich2/bin

It is convenient to put the path setting command in your startup file, .bashrc or .cshrc., for bash
or csh/tcsh respectively.

The blas and lapack libraries are installed with

yum install blas

yum install lapack

On our system, the libraries were installed in /usr/lib64 as libblas.so.3 and liblapack.so.3.
For some unknown reason, the install program does not add links to these files with extension .so,
which is necessary for the linker to find them. We must therefore add the links explicitly. If the
libraries were installed elsewhere on your system, but you don’t know where, you can find them
with the following command:

find / -name "*blas*" -print

After locating the directory where the libraries reside (in this case /usr/lib64), we add links to
the libraries with the commands:

cd /usr/lib64

ln -s libblas.so.3 libblas.so

ln -s liblapack.so.3 liblapack.so

Note that you need to have root privileges for this to work.

3

3 Unpacking the source code tar ball

To unpack the SW4 source code, you place the file sw4-v2.0.tgz in the desired directory and issue
the following command:

shell> tar xzf sw4-v2.0.tgz

As a result a new sub-directory named sw4-v2.0 is created. It contains several files and sub-
directories:

• LICENSE.txt License information.

• INSTALL.txt A link to this document.

• README.txt General information about SW4.

• configs Directory containing make configuration files.

• src C++ and Fortran source code of SW4.

• tools Matlab/Octave scripts for post processing and analysis.

• pytest Python script and input files for testing the SW4 installation.

• examples Sample input files.

• Makefile Main makefile (don’t change this file!).

• CMakeLists.txt CMake configuration file (don’t change this file either!).

• wave.txt Text for printing the ”SW4 Lives” banner at the end of a successful build.

4 Installing SW4 with make

The classical way of building SW4 uses make. We recommend using GNU make, sometimes called
gmake. You can check the version of make on you system with the command

shell> make -v

If you don’t have GNU make installed on your system, you can obtain it from www.gnu.org.
We have built SW4 and its supporting libraries on Intel based laptops and desktops running

LINUX and OSX. It has also been built on several supercomputers such as the Intel machines cab,
quartz (at LLNL) and edison, cori (at LBNL), as well as the IBM BGQ machine vulcan at
LLNL. We have successfully used the following versions of Gnu, Intel, and IBM compilers:

Gnu: g++/gcc/gfortran versions 4.5 to 7.2

Intel: icpc/icc/ifort versions 16.0 to 18.0

IBM Blue Gene: xlcxx/xlc/xlf versions 12.1 to 14.1

SW4 uses the message passing interface (MPI) standard (MPI-2 to be specific) for communica-
tion on parallel distributed memory machines. Note that the MPI library often includes wrappers
for compiling, linking, and running of MPI programs. For example, the mpich2 package build
wrappers for the underlying C++ and Fortran compilers called mpicxx and mpif90, as well as the
mpirun script. We highly recommend using these programs for compiling, linking, and running
SW4.

4

4.1 Basic compilation and linking of SW4

The best way of getting started is to first build SW4 without the proj.4 and cencalvm libraries.
This process should be very straight forward and the resulting SW4 executable will support all
commands except rfile, efile and the proj/ellps options in the grid command. If you need
to use these options, you can always recompile SW4 after the proj.4 and cencalvm libraries have
been installed. See § 6 for details.

The basic build process is controlled by the environmental variables FC, CXX, EXTRA_FORT_FLAGS,
EXTRA_CXX_FLAGS, and EXTRA_LINK_FLAGS. These variables should hold the names of the Fortan
and C++ compilers, and any extra options that should be passed to the compilers and linker.
The easiest way of assigning these variables is by creating a file in the configs directory called
make.inc. The Makefile will look for this file and read it if it is available. There are several
examples in the configs directory, e.g. make.osx for Macs and make.linux for Linux machines.
You should copy one of these files to your own make.inc and edit it as needed.

4.1.1 Mac machines

If you are on a Mac, you could copy the setup from make.osx,

shell> cd configs

shell> cp make.osx make.inc

shell> cat make.inc

etree = no

proj = no

FC = mpif90

CXX = mpicxx

EXTRA_FORT_FLAGS =

EXTRA_LINK_FLAGS = -framework Accelerate -L/opt/local/lib/gcc72 -lgfortran

In this case, the blas and lapack libraries are assumed to be provided by the -framework Accelerate

option. The libgfortran library is located in the directory /opt/local/lib/gcc72, which is where
macports currently installs it.

4.1.2 Linux machines

If you are on a Linux machine, we suggest you copy the configuration options from make.linux,

shell> cd configs

shell> cp make.linux make.inc

shell> cat make.inc

FC = gfortran

CXX = mpicxx

EXTRA_LINK_FLAGS = -L/usr/lib64 -llapack -lblas -lgfortran

This setup assumes that the blas and lapack libraries are located in the /usr/lib64 directory.
In the case of Fedora Core 18, we needed to set the link flag variable to

EXTRA_LINK_FLAGS = -Wl,-rpath=/usr/lib64/mpich2/lib -llapack -lblas -lgfortran

5

4.1.3 Using make

You build SW4 with the ”make” command from the main directory.

shell> cd /enter/your/path/sw4-v2.0

shell> make

If all goes well, you will see the SW4 Lives banner on your screen after the compilation and linking
has completed,

‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘

_________ ____ __ ____ _ __

/ ____ \ \ \ / \ / / / | | |

| | \./ \ \ / \ / / / | | |

| |______ \ \/ \/ / / ’--’ |

______ \ \ / |______ |

| | \ /\ / | |

/‘____| | \ / \ / | |

_________/ _/ _/ |__|

__ __ ____ ____ _______ ______ __

| | | | \ \ / / | ____| / __| | |

| | | | \ \/ / | |__ | (__ | |

| | | | \ / | __| __ | | |

| ‘----.| | \ / | |____ __) | |__|

|_______||__| __/ |_______| (_____/ (__)

‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘

By default, make builds an optimized sw4 executable. It is located in

/enter/your/path/sw4-v2.0/optimize/sw4

You can also build an executable with debugging symbols by adding the debug=yes option to make,

shell> cd /enter/your/path/sw4-v2.0

shell> make debug=yes

In this case, the executable will be located in

/enter/your/path/sw4-v2.0/debug/sw4

It can be convenient to add the corresponding directory to your PATH environment variable. This
can be accomplished by modifying your shell configuration file, e.g. ~/.cshrc if you are using
C-shell.

6

4.1.4 How do I setup the make.inc file?

The input file for make is

sw4-v2.0/Makefile

Do not change this Makefile. It should only be necessary to edit your configuration file, that is,

/my/path/sw4-v2.0/configs/make.inc

Note that you must create this file, for example by copying one of the make.xyz files in the same
directory. The make.inc file holds all information that is particular for your system, such as the
name of the compilers, the location of the third party libraries, and any extra arguments that
should be passed to the compiler or linker. This file also tells make whether or not the cencalvm

and proj.4 libraries are available and where they are located.
The following make.inc file includes all configurable options:

etree = no

proj = no

SW4ROOT = /Users/petersson1

CXX = mpicxx

FC = mpif77

EXTRA_CXX_FLAGS = -DUSING_MPI

EXTRA_FORT_FLAGS = -fno-underscoring

EXTRA_LINK_FLAGS = -framework vecLib

The etree variable should be set to yes or no, to indicate whether or not the cencalvm and
related libraries are available. The SW4ROOT variable is only used when etree=yes. The CXX and
FC variables should be set to the names of the C++ and Fortran compilers, respectively. Finally,
the EXTRA_CXX_FLAGS, EXTRA_FORT_FLAGS, and EXTRA_LINK_FLAGS variables should contain any
additional arguments that need to be passed to the C++ compiler, Fortran compiler, or linker, on
your system.

4.2 Building SW4 with proj.4 and/or efile support

The installation of the proj.4, euclid, and cencalvm libraries is discussed in Section 6. Note that the
proj.4 libraray enables the more advanced geographical mapping keywords in the grid command
and is also required by the rfile command. To enable the efile command, you have to also
install the euclid and cencalvm libraries. Note that the latter two libraries are only needed by
the efile command. If you are not planning on using that command, there is no need to install
those libraies. This is a change from SW4 version 1.0.

Once you have successfully installed the proj.4, and optionally the euclid and cencalvm libraries,
it should be easy to re-configure SW4 to use them. Simply edit your configuration file (make.inc)
by adding two lines to the top of the file, setting the etree keyword to yes or no, as appropriate.

proj = yes

etree = no

SW4ROOT = /thid/party/basedir

...

7

You then need to re-compile SW4. Go to the SW4 main directory, clean out the previous object
files and executable, and re-run make:

shell> cd /my/installation/dir/sw4-v2.0

shell> make clean

shell> make

If all goes well, the “SW4 lives” banner is shown after the make command is completed. As before,
the sw4 executable will be located in the optimize or debug directories.

4.3 Testing the SW4 installation

The SW4 source code distribution includes a python(3) script for running several tests and checking
the solutions against previously verified results. Note that the same set of tests can be performed
when SW4 is built with CMake, see Section 5.2.

After SW4 has been built with make, go to the pytest directory and run test_sw4.py. If the
sw4 executable resides in the optimize directory, you can run the basic tests by doing:

shell> cd pytest

shell> ./test_sw4.py

If all goes well, you should see the following output:

>shell test_sw4.py

Running all tests for level 0 ...

Starting test # 1 in directory: meshrefine with input file: refine-el-1.in

Test # 1 Input file: refine-el-1.in PASSED

Starting test # 2 in directory: meshrefine with input file: refine-att-1.in

Test # 2 Input file: refine-att-1.in PASSED

...

Starting test # 12 in directory: lamb with input file: lamb-1.in

Test # 12 Input file: lamb-1.in PASSED

Out of 12 tests, 12 passed and 0 failed.

Some aspects of the testing can be modified by providing command line arguments to test_sw4.py.
For a complete list of options do test_sw4.py --help, which currently give the output:

shell> ./test_sw4.py --help

usage: test_sw4.py [-h] [-v] [-l {0,1,2}] [-m MPITASKS] [-d SW4_EXE_DIR]

optional arguments:

-h, --help show this help message and exit

-v, --verbose increase output verbosity

-l {0,1,2}, --level {0,1,2}

testing level

-m MPITASKS, --mpitasks MPITASKS

number of mpi tasks

-d SW4_EXE_DIR, --sw4_exe_dir SW4_EXE_DIR

name of directory for sw4 executable

Note that the directory name for the sw4 executable should be given relative to the main sw4

directory.

8

5 Installing SW4 with CMake

SW4 can also be built with CMake. Compared to using regular make, this build process is easier to
use because it is fully automated. However, it gives the user less control of which compilers, linker,
and libraries to use. Similar to using regular make, the SW4 CMake configuration allows automated
correctness testing of the installation. The test runs the same set of cases as the test_sw4.py script
in the pytest directory, see Section 5.2 for details.

To use CMake, navigate to the top sw4 directory and run the following commands:

shell> mkdir build

shell> cd build

shell> cmake [options] ..

shell> make

The two dots after cmake [options] are essential and instructs it to look in the parent directory
for the CMakeLists.txt file.

The cmake command searches for the necessary libraries and other dependencies, then creates
makefiles that are appropriate for your system. You then run make to compiles and link SW4
using these makefiles. For details about the exact commands being used in compilation, run make

VERBOSE=1. Once SW4 has been successfully built, you will see the “SW4 Lives!” banner on the
screen.

NOTE: cmake puts the sw4 executable in the build/bin directory. This is different from regular
make, which puts the executable in the optimize directory.

NOTE: If you want to rebuild sw4 with a new set of options, you can force cmake to start from
scratch by removing the file CMakeCache.txt in the build directory. Another way is to remove all
files in the build directory.

5.1 CMake Options

CMake provides several options to allow customized configuration of SW4. To use any option, add
-D<option>=<value> to the options in the cmake command. For example:

cmake -DTESTING_LEVEL=1 -DCMAKE_BUILD_TYPE=Debug ..

configures SW4 with testing level 1, to be compiled with debugging symbols in the object files. A
list of options is shown in the table below.

9

Option Default Details

PROJ4 HOME (none) The path to the Proj.4 installation to use when com-
piling SW4.

CENCALVM HOME (none) The path to the cencalvm installation to use when com-
piling SW4.

CMAKE BUILD TYPE Release The type of build to setup. Can be either Debug,
Release, or RelWithDebInfo. This affects the type of
optimization and debug flags used in compiling SW4.

TESTING LEVEL 0 Specifies the testing level for automated tests. Level 0
corresponds to tests that run in roughly a minute or
less (7 total), level 1 to tests that run in roughly 10
minutes or less (13 total) and level 2 to tests that may
require up to an hour or more (17 total).

MPI NUM TEST PROCS 4 Number of MPI processes to use in tests. Generally
using more processes will result in the tests finishing
faster, but there is no point exceeding the number of
available cores on your system. We strongly recom-
mend at least 8 processes if TESTING LEVEL is 1 or
higher.

MPIEXEC mpirun UNIX command for running an MPI application.

MPIEXEC NUMPROC FLAG -np MPI command option for specifying the number of pro-
cesses.

MPIEXEC PREFLAGS (none) Extra MPI command option.

Modifying the MPI execution commands. By default, mpirun is used to start parallel runs
when you do make test. However, on Livermore computing (LC) machines the command for
running MPI programs is srun, not mpirun. Also, the flag for specifying the number of processors
is different, and you must give an additional flag for running interactive jobs on the debug partition.
For example, you would say

srun -ppdebug -n 128 sw4 inputfile.in

to run on the debug partition using 128 cores. To modify the default MPI execution pro-
gram and other runtime parameters, the variables MPIEXEC, MPIEXEC NUMPROC FLAG, and
MPIEXEC PREFLAGS can be set as in the following example:

cmake -DTESTING_LEVEL=2 -DMPI_NUM_TEST_PROCS=128 -DMPIEXEC=/usr/bin/srun \

-DMPIEXEC_NUMPROC_FLAG=-n -DMPIEXEC_PREFLAGS=-ppdebug ..

After the proj.4, euclid and cencalvm libraries have been installed (see next section), you need
to tell cmake where to find them. On the LC-machines, all three libraries are currently installed
under /usr/apps/wpp, and you can use the following command options to configure sw4:

cmake -DTESTING_LEVEL=2 -DMPI_NUM_TEST_PROCS=36 -DMPIEXEC=/usr/bin/srun \

-DMPIEXEC_NUMPROC_FLAG=-n -DMPIEXEC_PREFLAGS=-ppdebug \

-DPROJ4_HOME=/usr/apps/wpp -DCENCALVM_HOME=/usr/apps/wpp ..

10

To verify that cmake actually found the libraries, pay attention to the following lines of the output
from the cmake command:

...

-- Found PROJ4: /usr/apps/wpp/lib/libproj.so

-- Found CENCALVM: /usr/apps/wpp/lib/libcencalvm.so;/usr/apps/wpp/lib/libetree.so

...

Sometimes CMake doesn’t pick up the correct compiler. Say, for example that the C++ compiler
on your system is called mpicxx and the Fortran compiler is mpiifort. You can tell cmake to use
those compilers by setting the following envoronment variables before running cmake (assuming a
csh shell),

> setenv CXX mpicxx

> setenv FC mpiifort

5.2 CTest

The SW4 CMake configuration includes several test cases that are used to verify the correctness
of the SW4 installation. Each test consists of two parts. First it runs a case using an input file in
the pytest directory. Secondly, it checks that the results are within a reasonable error tolerance
from previously recorded results.

To run the tests, use either the command make test or ctest as follows:

build > ctest

Test project /Users/petersson1/src/sw4-cig/build

Start 1: Run_twilight/flat-twi-1

1/24 Test #1: Run_twilight/flat-twi-1 Passed 0.49 sec

Start 2: Check_Result_twilight/flat-twi-1

2/24 Test #2: Check_Result_twilight/flat-twi-1 Passed 0.03 sec

Start 3: Run_twilight/flat-twi-2

...

Start 23: Run_pointsource/pointsource-sg-1

23/24 Test #23: Run_pointsource/pointsource-sg-1 Passed 89.56 sec

Start 24: Check_Result_pointsource/pointsource-sg-1

24/24 Test #24: Check_Result_pointsource/pointsource-sg-1 ... Passed 0.03 sec

100\% tests passed, 0 tests failed out of 24

Total Test time (real) = 230.91 sec

You can run tests selectively using ctest -R <regex>, for example:

build > ctest -R meshrefine

Test project /Users/petersson1/src/sw4-cig/build

Start 15: Run_meshrefine/refine-el-1

1/6 Test #15: Run_meshrefine/refine-el-1 Passed 25.61 sec

Start 16: Check_Result_meshrefine/refine-el-1

2/6 Test #16: Check_Result_meshrefine/refine-el-1 Passed 0.03 sec

11

Start 17: Run_meshrefine/refine-att-1

3/6 Test #17: Run_meshrefine/refine-att-1 Passed 22.00 sec

Start 18: Check_Result_meshrefine/refine-att-1

4/6 Test #18: Check_Result_meshrefine/refine-att-1 Passed 0.03 sec

Start 19: Run_meshrefine/refine-att-2nd-1

5/6 Test #19: Run_meshrefine/refine-att-2nd-1 Passed 17.63 sec

Start 20: Check_Result_meshrefine/refine-att-2nd-1

6/6 Test #20: Check_Result_meshrefine/refine-att-2nd-1 ... Passed 0.03 sec

100% tests passed, 0 tests failed out of 6

Total Test time (real) = 65.35 sec

If a test fails you can check the details in the output log at Testing/Temporary/LastTest.log.

6 Installing the proj.4, euclid, and cencalvm packages

If you are only interested in using the advanced geographical mapping options of the grid command,
or the rfile command, you only need to install the proj.4 package.

The following instructions describe how to install all three packages. For simplicity all packages
are installed under the same top directory. If you are using cmake, you may optionally put the proj.4
package in a separate directory. In the following we shall assume that all packages are installed under
the same top directory, and that you assign the name of that directory to the environment variable
SW4ROOT. When you are finished installing the packages, the corresponding include and library files
should be in the sub-directories ${SW4ROOT}/include and ${SW4ROOT}/lib, respectively.

The cencalvm library was developed by Brad Aagaard at USGS. Instructions for building the
cencalvm library as well as downloading the Etree database files for Northern California, can
currently be downloaded from

http://earthquake.usgs.gov/data/3dgeologic/cencalvm_doc/INSTALL.html

The installation process for cencalvm, which is outlined below, is described in detail on the above
web page. Note that cencalvm relies on both the euclid and the proj.4 libraries.

The euclid library must be installed manually by explicitly copying all include files to the include
directory and all libraries to the lib directory,

shell> cd euclid3-1.2/libsrc

shell> make

shell> cp *.h ${SW4ROOT}/include

shell> cp libetree.* ${SW4ROOT}/lib

The proj4 library should be configured to be installed in ${SW4ROOT}. This is accomplished by

shell> cd proj-4.7.0

shell> configure --prefix=${SW4ROOT}

shell> make

shell> make install

12

We remark that the proj.4 library can alternatively be installed using macports (if you are on a
Mac OSX machine).

The cencalvm library should also be configured to be installed in ${SW4ROOT}. You also have
to help the configure script finding the include and library files for the proj.4 and etree libraries,

shell> cd cencalvm-0.6.5

shell> configure --prefix=${SW4ROOT} CPPFLAGS="-I${SW4ROOT}/include" \

LDFLAGS="-L${SW4ROOT}/lib"

shell> make

shell> make install

To verify that the libraries have been installed properly, you should go to the SW4ROOT directory
and list the lib sub-directory (cd ${SW4ROOT}; ls lib). You should see the following files (on
Mac OSX machines, the .so extension is replaced by .dylib):

shell> cd ${SW4ROOT}

shell> ls lib

libetree.so libetree.a

libproj.so libproj.a libproj.la

libcencalvm.a libcencalvm.la libcencalvm.so

Furthermore, if you list the include sub-directory, you should see include files such as

shell> cd ${SW4ROOT} %$

shell> ls include

btree.h etree.h etree_inttypes.h

nad_list.h projects.h proj_api.h

cencalvm

Note that the include files for cencalvm are in the sub-directory with the same name.

7 Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal li-
ability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States government or Lawrence Livermore National Security, LLC, and shall not be used
for advertising or product endorsement purposes.

References

[1] N. A. Petersson and B. Sjögreen. User’s guide to SW4, version 2.0. Technical Report LLNL-
SM-741439, Lawrence Livermore National Laboratory, 2017. (Source code available from
geodynamics.org/cig).

13

	Introduction
	Compilers and third party libraries
	Unpacking the source code tar ball
	Installing SW4 with make
	Basic compilation and linking of SW4
	Mac machines
	Linux machines
	Using make
	How do I setup the make.inc file?

	Building SW4 with proj.4 and/or efile support
	Testing the SW4 installation

	Installing SW4 with CMake
	CMake Options
	CTest

	Installing the proj.4, euclid, and cencalvm packages
	Disclaimer

