

2

Gale

© California Institute of Technology

Walter Landry and Luke Hodkinson

Version 2.0.1

August 22, 2012

2

About the cover: A 3D simulation of a mid-ocean ridge courtesy of Garrett Ito.

Contents

1 Preface 9
1.1 Who Will Use Gale? . 9
1.2 Citation . 9
1.3 Support . 9
1.4 Gale History . 10

2 Introduction 11
2.1 About Gale . 11
2.2 Gale Computational Approach and Governing Equations . 11

2.2.1 Infrastructure . 11
2.2.2 Units . 11
2.2.3 Basic Equations . 11
2.2.4 Gravity . 12
2.2.5 Divergence Forces . 12
2.2.6 Rheology . 13
2.2.7 Temperature . 13
2.2.8 Numerical Solution . 13

2.2.8.1 Finite Elements . 13
2.2.8.2 Thermal Advection and Di�usion . 13
2.2.8.3 Scaling . 14
2.2.8.4 Uzawa Algorithm . 14

3 Installation and Getting Help 17
3.1 Introduction . 17
3.2 Binaries . 17
3.3 Building from Source . 17

3.3.1 System Requirements . 17
3.3.2 Downloading the Code . 17

3.3.2.1 Source Code Repository (Experts Only) . 18
3.4 Support . 18

4 Running Gale 19
4.1 Basic Usage . 19
4.2 Advanced Usage . 20

4.2.1 Drucker-Prager Rheology . 20
4.2.2 Direct Solvers . 21
4.2.3 Command-Line Parameters . 21
4.2.4 Checkpointing . 22
4.2.5 Debugging Input Files . 22

4.3 Output and Visualization . 22
4.3.1 Basic Visualization with Visit . 23

4.4 Gauging Accuracy . 36

3

4 CONTENTS

5 Cookbooks 37
5.1 Introduction . 37

5.1.1 Adding Lines to the Template File . 37
5.1.2 Adding Variables to the Template File . 37

5.2 Viscous Material . 37
5.3 Viscous Material in Simple Extension . 38
5.4 Viscous Material with Complex Boundaries . 39
5.5 Viscous Material with Boundary Conditions Read From a File 40
5.6 Viscous Material with In�ow/Out�ow Boundaries . 41
5.7 Viscous Material in Extension with Normal Stress Boundaries 42
5.8 Viscous Material with Deformable Bottom Boundary . 44
5.9 Viscous Material with Initially Deformed Upper Boundary . 45
5.10 Viscous Material with Fixed, Deformed Bottom Boundary . 46
5.11 Extension in 3D with topography . 48
5.12 Tracers . 49
5.13 Multiple Viscous Materials . 51
5.14 Yielding Material in Simple Extension . 53
5.15 Thermal Convection . 55
5.16 Thermal Convection with Initial Conditions from a File . 58
5.17 Pure Thermal . 60
5.18 Power Law Creep . 61

A Input File Format 63
A.1 Structure . 63

A.1.1 Components . 63
A.1.2 EulerDeform . 64
A.1.3 Initial and Boundary Conditions . 65
A.1.4 Variables . 66

A.2 Temperature components . 67
A.3 Shapes . 67

A.3.1 EquationShape . 69
A.3.2 Box . 69
A.3.3 PolygonShape . 70

A.4 Materials . 70
A.4.1 StoreVisc and StoreStress . 72
A.4.2 Viscous . 72

A.4.2.1 MaterialViscosity . 72
A.4.2.2 Frank-Kamenetskii . 72
A.4.2.3 Arrhenius . 72
A.4.2.4 NonNewtonian . 72

A.4.3 Yielding . 73
A.4.3.1 StrainWeakening . 73
A.4.3.2 VonMises . 74
A.4.3.3 DruckerPrager . 74
A.4.3.4 FaultingMoresiMulhaus2006 . 76

A.5 Boundary Conditions . 76
A.5.1 Velocity Boundary Conditions . 76
A.5.2 Flux Boundary Conditions . 77
A.5.3 Stress Boundary Conditions . 78
A.5.4 Temperature Boundary Conditions . 78
A.5.5 Deformed Upper and Lower Boundaries . 78
A.5.6 Erosion . 79

A.5.6.1 Di�usion . 79
A.5.6.2 HRS Erosion . 80

CONTENTS 5

A.6 Solver Parameters . 81
A.7 Fixing Internal Degrees of Freedom . 81
A.8 Initial Conditions . 82
A.9 Buoyancy Forces . 82

A.9.1 BouyancyForceTerm . 82
A.9.2 BuoyancyForceTermThermoChem . 83

A.10 Divergence Forces . 83
A.11 Equation Input . 84
A.12 File Input Data . 86
A.13 Tracers . 86
A.14 Verbosity Options . 87

B Benchmarks 89
B.1 Falling Sphere . 90
B.2 Relaxation of Topography . 93
B.3 Divergence . 95
B.4 Thermal Di�usion . 96
B.5 Lagrangian Thermal Advection . 98
B.6 Eulerian Thermal Advection . 100

C License 103

6 CONTENTS

List of Figures

4.1 Two blocks sliding past each other with a yielding region between them. 20

5.1 Strain rate invariant and velocity of viscous material in extension 39
5.2 Split Boundary . 39
5.3 Strain rate invariant and velocity with complex boundaries 40
5.4 Strain rate invariant and velocity with boundary conditions read from a �le 41
5.5 In�ow/Out�ow Boundary . 41
5.6 Strain rate invariant and velocity with in�ow/out�ow boundaries 42
5.7 Strain rate invariant and velocity of viscous material in extension with a normal stress boundary 44
5.8 Strain rate invariant and velocity of viscous material with a deformable bottom boundary . . 45
5.9 Sinusoidal Top . 45
5.10 Strain rate invariant and velocity with initially deformed upper boundary 46
5.11 Strain rate invariant and velocity with initially deformed upper boundary 46
5.12 Geometry and boundary conditions for the �xed, deformed bottom boundary 47
5.13 Strain rate invariant and velocity for a deformed bottom boundary 48
5.14 Strain rate invariant and velocity for a deformed bottom boundary 50
5.15 Particle tracks of tracers . 51
5.16 Multiple Viscous Materials . 51
5.17 Strain rate invariant and velocity with multiple viscous materials 53
5.18 Viscosities with multiple viscous materials . 53
5.19 Strain rate invariant and velocity of yielding material in extension 54
5.20 Viscosity of yielding material in extension . 54
5.21 Accumulated post-yielding strain of yielding material in extension 55
5.22 Temperature and velocity for the thermal convection example 58
5.23 Temperature and velocity when using temperature initial data from a �le. 59
5.24 Temperature and velocity when using temperature initial data from a �le. 61
5.25 Temperature and velocity for the power-law creep model . 62

A.1 Areas covered by material box shapes and the computational domain. 67
A.2 Geometry for HRS Erosion . 80

B.1 Schematic of a Sphere falling through a Cylinder . 90
B.2 Velocity in the sphere and surrounding medium . 92
B.3 Error in computed velocity vs. resolution . 93
B.4 Strain rate and velocities for a sinusoidal topography relaxing under gravity 94
B.5 Error in the height at the peak . 95
B.6 Temperature at the beginning of the thermal di�usion benchmark. The mesh is 16×16 elements. 96
B.7 Temperature at the end of the thermal di�usion benchmark. The mesh is 16×16 elements. . . 97
B.8 Error in the maximum temperature at t = 0.0011489 as a function of resolution. 97
B.9 Initial temperature and velocity of the lagrangian thermal advection benchmark. 98
B.10 Final temperature and velocity of the lagrangian thermal advection benchmark. 99
B.11 Initial temperature of the eulerian thermal advection benchmark. 100
B.12 Temperature at t = 0.25 for a run with 16×16 elements. 100

7

8 LIST OF FIGURES

B.13 Temperature at t = 0.25 for a run with 32×32 elements. 101
B.14 Temperature at t = 0.25 for a run with 64×64 elements. 101

Chapter 1

Preface

1.1 Who Will Use Gale?

The main audience for Gale is research scientists interested in modeling tectonic processes on long geological
time scales. Examples of problems that can be solved are the development of tectonic structures associated
with extension and compression, especially where localization is important. You do not have to be an expert
in �nite element analysis or scienti�c computing to use this software.

1.2 Citation

Computational Infrastructure for Geodynamics (CIG) is making this source code available to you in the hope
that the software will enhance your research in geophysics. The underlying C code for the �nite element
package was donated to CIG in July of 2005. A number of individuals have contributed a signi�cant portion
of their careers toward the development of Gale. It is essential that you recognize these individuals in the
normal scienti�c practice by making appropriate acknowledgments.

The code is based on the method described in

� Moresi, L.N., F. Dufour, and H.-B. Mühlhaus (2003), A Lagrangian integration point �nite element
method for large deformation modeling of viscoelastic geomaterials, J. Comp. Phys., 184 , 476-497.

The code was originally developed by the Victorian Partnership for Advanced Computing (VPAC) and Louis
Moresi's group at Monash University. Walter Landry of CIG and Luke Hodkinson of VPAC have enhanced
the code to satisfy the requirements of the long-term tectonics community. Roger Buck, Gus Correa, Robert
Bialas, Guillaume Duclaux, John Sheehan, Garrett Ito, Noah Fay, Neil de Laplante, Matthieu Quinquis,
Patrice Rey, Lara O'Dwyer, Louise Kellogg, Laetitia Le Pourhiet, Leonardo Da Cruz, Jolante Van Wijk,
Tristan Salles, Mark Fleharty, Taichi Sato, and Lester Anderson provided valuable user testing. The Gale
team requests that in your oral presentations and in your papers that you indicate your use of this code
and acknowledge the authors of the code, CIG (www.geodynamics.org), Victoria Partnership for Advanced
Computing (www.vpac.org), and Monash University (www.monash.edu).

1.3 Support

Gale development is supported by a grant from the National Science Foundation to CIG, managed by
the California Institute of Technology, under Grant No. EAR-0406751. However, most of the software
components below Gale have been developed by the Victoria Partnership for Advanced Computing (VPAC)
and Monash University. Some of the support for VPAC has come from subawards from CIG.

Any opinions, �ndings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily re�ect the views of the National Science Foundation.

9

www.geodynamics.org
www.vpac.org
www.monash.edu

10 CHAPTER 1. PREFACE

1.4 Gale History

Gale arose from discussions at an NSF-sponsored workshop on Tectonic Modeling held in Breckenridge,
Colorado, in June 2005; see Geodynamic Modeling of Tectonics Processes 2005 workshop report (www.
geodynamics.org/cig/workinggroups/long/workshops/2005/issues). At that workshop, members of
the tectonics community advocated that CIG develop a new open-source software package for solving tectonic
problems. Existing private codes have seen a great deal of use in crustal and lithospheric deformation
problems such as orogenesis, rifting, and subduction. They have also been coupled with surface erosion
models, as well as being employed for deeper mantle dynamics problems. Gale is an open-source code that
is intended to cover these research areas, with the addition of 3D capability.

The development of Gale was jump-started by building on top of Underworld [3], a mantle convection
code developed by Louis Moresi's group at Monash and the Victorian Partnership for Advanced Computing
(VPAC). Underworld was created as a parallel version of Ellipsis3D [6], a mantle convection code which grew
out of CitCom [7]. Walter Landry of CIG and Luke Hodkinson of VPAC are the primary developers of the
Gale-speci�c components.

www.geodynamics.org/cig/workinggroups/long/workshops/2005/issues
www.geodynamics.org/cig/workinggroups/long/workshops/2005/issues

Chapter 2

Introduction

2.1 About Gale

Gale is a parallel, two- or three-dimensional code that solves problems related to orogenesis, rifting, and
subduction. Gale starts with a collection of particles to track material properties such as density and, for
strain-softening materials, strain. At each point in time, a �nite element mesh is superimposed over the
particles. This allows Gale to simulate problems with large deformations and irregular boundaries.

CIG developed Gale in response to community demand by building on existing work by VPAC and Louis
Moresi's group at Monash University. The code is being released under the GNU General Public License.

2.2 Gale Computational Approach and Governing Equations

2.2.1 Infrastructure

Particles are the fundamental object in Gale. Particles store all of the material properties, including density,
integrated strain, and thermal di�usivity. A logically regular �nite element mesh is created at each time
step. Material properties are interpolated from the particles to the mesh, and the Stokes equations are then
solved on that mesh. This mesh can become quite distorted, as the boundaries of the mesh will be stretched
to cover the particles wherever they go. Once the Stokes equations are solved, the mesh is retained only to
provide a good initial guess for the next time step.

2.2.2 Units

Gale has no internal knowledge of units. So if you tell Gale that a box is 10 units across, it does not know
or care whether it is 10 cm or 10 km. You only have to make sure that you are consistent. For example, if
you give velocities in cm/year, make sure that your viscosities and lengths also use cm and years. However,
you may have to scale your units to make the solver work (see Section 2.2.8.3).

2.2.3 Basic Equations

We start by decomposing the stress tensor σ into pressure p and deviatoric stress τ

σij = τij − pδij , (2.1)

where δ is the Kronecker delta. In its simplest form, Gale solves a conservation equation for momentum

τij,j − p,i = 0, (2.2)

subject to the (incompressible) continuity equation

vi,i = 0, (2.3)

11

12 CHAPTER 2. INTRODUCTION

where v is the velocity. We use the convention that repeated indices (e.g., vi,i) imply a sum over all
dimensions. So in three dimensions

vi,i ≡ vx,x + vy,y + vz,z. (2.4)

Note that there is no explicit time dependency in Equation 2.2. Gale simulates creeping �ows, so ac-
celeration terms are neglected and material motion evolves through a series of equilibria. If your boundary
condition has a time dependent component, then you may infer a time. For example, if the boundaries
move inwards at 1 mm/sec, then the solution when the boundaries have moved 5 mm would correspond to
5 seconds.

Assuming a simple Newtonian �uid, we can write τ in terms of the rate of strain tensor ε̇

τij = 2ηε̇ij ≡ η (vi,j + vj,i) , (2.5)

where η is the viscosity.
Note that equation 2.2 has no dependence on the magnitude of the velocity. Rather, only the derivative

of the velocity comes into play. This means that, in the absence of boundary conditions, you can take a valid
solution, add 1040 to all of the velocity components, and you will still have a valid solution. In practice, if
you do not specify the velocity somewhere, the code will have problems �nding a solution.

This means that, in 2D, you must specify vx and vy for at least in one point in your simulation (it does
not have to be the same point).

2.2.4 Gravity

Equations 2.2 and 2.3 do not include the e�ect of gravity. Gravity is accounted for by adding a body force
term to Equation 2.2

τij,j − p,i = fi, (2.6)

where

fx = 0
fy = −gρ
fz = 0

. (2.7)

Note that the vertical direction is in the y direction, not the z direction. This makes it easy to switch
between 2D and 3D models without rewriting the entire input �le.

2.2.5 Divergence Forces

It can sometimes be convenient to create a model where material is created within the simulation. For
example, magma chambers can be fed through small channels that emanate from far away, outside the
simulation. Simulating these small channels would be too computationally expensive. Instead, we can model
the magma as just being created in the chamber.

You do this by adding a divergence term to the continuity Equation (Eq. 2.3),

vi,i = d, (2.8)

where d is a scalar that can depend on anything: time, space, strain, etc. In this form, the divergence
modi�es the velocity. However, since the velocity and pressure are not really independent, you can also
think of it as setting a condition on the pressure. For example, consider a one dimensional isoviscous case
with no gravity. You can write the momentum Equation (Eq. 2.2) as

η (vi,jj + vj,ij) + p,i = 0. (2.9)

In one dimension, Equation 2.8 becomes

vx,x = d, (2.10)

2.2. GALE COMPUTATIONAL APPROACH AND GOVERNING EQUATIONS 13

which implies

2ηd,x + p,x = 0. (2.11)

So if you specify the divergence as a constant in one region and zero outside, that is equivalent to specifying a
pressure drop across the boundary of the region. This result also holds in general for spherical and ellipsoidal
regions, although not if the viscosity varies across the boundary of the region.

2.2.6 Rheology

Gale incorporates a number of di�erent rheologies and allows you to create your own. For more complicated,
non-linear rheologies, Gale still solves Equation 2.5 for the velocity. However, because the viscosity may
depend on the velocity and its derivatives, Gale now has to iterate until it reaches a self consistent solution
for the viscosity and velocity. See Section 2.2.8.4 for more details. For details on the existing rheologies, see
Section A.4.

2.2.7 Temperature

Equation 2.6 does not explicitly include the e�ect of temperature and heat transfer. Temperature can be
implicitly included by using a temperature dependent viscosity and/or modifying the gravitational force
to have a thermal buoyancy term. To make the simulation completely self consistent, we solve the energy
equation

∂T

∂t
+ v · ∇T = κ∇2T +Q, (2.12)

where T is the temperature, κ is the thermal di�usivity, and Q is the rate of energy production (e.g., from
radiogenic sources). Note that Equation 2.12 introduces time into the equation.

2.2.8 Numerical Solution

2.2.8.1 Finite Elements

Gale can use a few di�erent types of �nite elements to represent the solution. The recommended elements
are quadratic (Q2) elements for the velocity and temperature, and discontinuous linear (P−1) elements for
the pressure. These elements are mathematically well behaved and have been used in other computational
codes with success.

If, for some reason, you wish use a di�erent element type, Gale also supports linear (Q1) and piecewise
constant (P0) elements. One formulation common in many solid earth modelling codes is to use Q1 elements
for the velocity and P0 elements for the pressure. This formulation gives rise to a checkerboard instability.
While this instability is not always fatal, dealing with it can be di�cult and error prone.

Previous versions of Gale did not support Q2 or P−1 elements, so the recommendation was to use Q1

elements for both the velocity and pressure. This formulation has its own instability that is �xed by adding
an arti�cial compressibility. In principle, this arti�cial compressibility should be small and get smaller as
resolution increases. In practice, for realistic geologic problems, the arti�cial compressibility was far too
large and dramatically altered the dynamics.

2.2.8.2 Thermal Advection and Di�usion

Gale uses the Stream Upwind Petrov-Galerkin (SUPG) method to solve the energy equation (eq. 2.12). This
should normally work without any modi�cation. However, if the elements in your model gets signi�cantly
distorted, you may see anomalously high temperature variations. To �x this, you can modify supgFactor,
as detailed in Section A.2.

14 CHAPTER 2. INTRODUCTION

2.2.8.3 Scaling

One thing to note is that Equations 2.2 and 2.3 have di�erent units. So, if you have a viscosity of 1025Pa · s
and you express your viscosities in Pa · s, the numbers in the two equations will be too disparate and cause
the solver to fail. One workaround is to scale the units of time and mass (e.g., seconds and kg) so that the
viscosities are around 1. So if the viscosities are around 1025, then scale time and mass as

s → 1025s,
kg → 1050kg.

This implies that a viscosity of 1025Pa · s becomes 1, and a velocity of 10−11m/s becomes 1014. Viscosities
become small and velocities become large.

Scaling it this way means that you do not have to scale the length or stresses. You also do not have to
scale the density or gravity, since they only appear when multiplied by each other. The main things you
have to change are the viscosities and velocities. For thermal simulations, you also have to scale the thermal
di�usivity and heat production rate. If you are using the NonNewtonian Rheology (see Section A.4.2.4), you
have to scale A, refStrainRate, minViscosity, and maxViscosity. For example, A has units of s−1Pa−n,
so in this case Anew = Aold10

25.

2.2.8.4 Uzawa Algorithm

Using standard �nite-element techniques, you can collect all of the terms together and represent them in
matrix form (

K G
GT C

)(
v
p

)
=

(
f
d

)
, (2.13)

where K is a complicated submatrix depending on material properties, G is the simple gradient operator,
C is a compressibility term (if the material is compressible), f is the body force (e.g., gravity), and d is the
divergence term. This implies the separate relations

Kv +Gp = f
GT v + Cp = d

. (2.14)

In order to solve this, it turns out to be useful to solve a simpli�ed form of(
GTK−1G

)
z = r,

where r is given and z is unknown. Starting from an approximate solution to this equation makes it easier
to �nd a solution to the complete equation. The choice used in Gale is to approximate GTK−1G with

Q ≡ GT [diag (K)]
−1
G.

Q is known as a preconditioner. To actually solve Equation 2.14, we use the Uzawa algorithm [5]. In
particular, the steps are

1. Start with an initial guess of q0 of the pressure-like variable.

2. Solve K u0 = f −Gq0 for u0.

3. Calculate the residual r0 = GTu0 + Cq0 − d.

4. do

5. k=1

6. Solve Qzk−1 = rk−1 for zk−1.

7. if k==1

2.2. GALE COMPUTATIONAL APPROACH AND GOVERNING EQUATIONS 15

8. s1 = z0

9. else

10. β =
zTk−1rk−1

zT
k−2

rk−2

11. sk = rk−1 + βsk−1

12. end if

13. Solve Ku∗ = Gsk for u
∗.

14. α =
zTk−1rk−1

sT
k
(GTu∗−Msk)

15. qk+1 = qk + αsk

16. uk+1 = uk − αu∗

17. rk = rk−1 − α
(
GTu∗ −Msk

)
18. k=k+1

19. while (uk+1 − uk) /uk+1 > linear tolerance

That will give us a single solution to Equation 2.14 with a certain viscosity. However, because of yielding or
strain-rate dependent rheologies, the viscosity will change and the solution will not be consistent. To make
it consistent, we need to recompute the viscosities with the new solution for the pressure and velocity. Then
we solve Equation 2.14 again using our previous solution for the pressure as a starting point. We continue
this process until the change in the velocity is less than the non-linear tolerance.

16 CHAPTER 2. INTRODUCTION

Chapter 3

Installation and Getting Help

3.1 Introduction

Installation of Gale on a desktop or laptop machine is, in most cases, very easy. Binary packages have been
created for Linux, Mac OS X, and Windows. Installation on other architectures or on parallel machines
requires building the software from the source code, which can be di�cult for inexperienced users.

3.2 Binaries

If you do not need to run on parallel machines, the easiest way to install Gale is to download binaries for
your platform from the Gale website (geodynamics.org/cig/software/packages/long/gale/). Then you
can run Gale from the command line or DOS prompt. CIG provides binaries for Linux, Mac OS X, and
Windows.

3.3 Building from Source

Read this only if the binaries are not su�cient for you.

3.3.1 System Requirements

Gale works on a variety of computational platforms. In order to build Gale, you must have a C++ compiler
and the headers and development libraries for

� MPI

� PETSc 3.0 (not 3.1!)

� libxml2

� HDF5

You must also have python 2.2.1 or greater installed. If you do not already have MPI, then in many cases
PETSc can install a version for you. Installing PETSc also requires a Blas/Lapack implementation, which,
again, PETSc can install for you.

HDF5 is not strictly required, but checkpointing and visualization will not work without it.

3.3.2 Downloading the Code

You can get the source for the latest release from the Gale website (geodynamics.org/cig/software/
packages/long/gale/). In that tarball is the �le INSTALL. For some platforms, there are platform-speci�c
instructions. Generally, the hardest part is not installing Gale itself, but PETSc.

17

geodynamics.org/cig/software/packages/long/gale/
geodynamics.org/cig/software/packages/long/gale/
geodynamics.org/cig/software/packages/long/gale/

18 CHAPTER 3. INSTALLATION AND GETTING HELP

3.3.2.1 Source Code Repository (Experts Only)

Advanced users and software developers may be interested in downloading the latest Gale source code directly
from the CIG source code repository, instead of using the prepared source package. To check whether you
have a Mercurial client installed on your machine, type:

hg

You should get a help message that starts with:

Mercurial Distributed SCM

...

Otherwise, you will need to download and install a Mercurial client, available at the Mercurial Website
(mercurial.selenic.com). Then the code can be checked out with the following commands:

hg clone http://geodynamics.org/hg/long/3D/gale gale

hg clone http://geodynamics.org/hg/long/3D/gale/PICellerator gale/PICellerator

hg clone http://geodynamics.org/hg/long/3D/gale/StGermain gale/StGermain

hg clone http://geodynamics.org/hg/long/3D/gale/StgDomain gale/StgDomain

hg clone http://geodynamics.org/hg/long/3D/gale/StgFEM gale/StgFEM

hg clone http://geodynamics.org/hg/long/3D/gale/Underworld gale/Underworld

hg clone http://geodynamics.org/hg/long/3D/gale/config gale/config

hg clone http://geodynamics.org/hg/long/3D/gale/gLucifer gale/gLucifer

You can then update your checkout with the commands

cd gale

hg pull -u

cd PICellerator

hg pull -u

cd ../StGermain

hg pull -u

cd ../StgDomain

hg pull -u

cd ../StgFEM

hg pull -u

cd ../Underworld

hg pull -u

cd ../config

hg pull -u

cd ../gLucifer

hg pull -u

3.4 Support

The primary point of support for Gale is the CIG Long-Term Crustal Dynamics Mailing List (cig-long@
geodynamics.org). Feel free to send questions, comments, feature requests, and bugs to the list. The
mailing list is archived at

(geodynamics.org/pipermail/cig-long/)

You may also use the bug tracker

(geodynamics.org/roundup)

to submit bugs and requests for new features.

mercurial.selenic.com
cig-long@geodynamics.org
cig-long@geodynamics.org
geodynamics.org/pipermail/cig-long/
geodynamics.org/roundup

Chapter 4

Running Gale

4.1 Basic Usage

If you downloaded binaries for your platform, you can run the Gale executable directly. For example,

./Gale-2_0_1 input/cookbook/yielding.json

will output

TimeStep = 0, Time = 0

TimeStep = 1, Time = 0.021503

TimeStep = 2, Time = 0.0427746

TimeStep = 3, Time = 0.0638247

TimeStep = 4, Time = 0.0846619

TimeStep = 5, Time = 0.105288

TimeStep = 6, Time = 0.125705

TimeStep = 7, Time = 0.145914

TimeStep = 8, Time = 0.165918

TimeStep = 9, Time = 0.185726

TimeStep = 10, Time = 0.205284

It will also create a great deal of output in the directory output/.
If you do not specify an input �le, you will get no output. If Gale cannot �nd the �le, you will get an

error:

Error on line 1 at column 1

not a value

Error: Could not read input file input/cookbook/foo.json. Exiting.

Due to quirks in some implementations of MPI, you may have to specify the complete path to the input �le
(e.g., ./Gale-2_0_1 /home/juser/gale/input/cookbook/yielding.json).

For examples of how to create your own input �les, see Chapter 5. For a complete description of the
input �le format, see Appendix A.

If you compile Gale yourself, you can run it from where you installed it. If running in parallel on your
own machine, prepend mpirun or mpiexec (depending on your local implementation of MPI). For example,
if your computer has two cores, then

mpirun -np 2 bin/Gale /home/juser/gale/input/cookbook/yielding.json

will use both cores.

19

20 CHAPTER 4. RUNNING GALE

4.2 Advanced Usage

4.2.1 Drucker-Prager Rheology

The Drucker-Prager rheology models a material that is rigid until the shear stress reaches a breaking, or
yield, stress. Once the material yields, Gale reduces the viscosity of the material such that, given the strains
applied to the material, the induced stress will now equal the yield stress. Unfortunately, there are two
problems with this.

1. This is a numerical process, so the viscosity may be set too low. If the viscosity is too low, then the
material will slip too easily, and there may be problems with numerical convergence.

2. There is no length scale inherent in this method. So as you increase resolution, you will get �ner
and �ner faults. This would not be too much of a problem if you just got the same faults, but more
�nely resolved. But what happens is that you tend to get more and more faults everywhere. The
algorithm never converges to a single answer, and so it is di�cult to say whether any results you get
are reasonable. Moreover, if the size of your faults is always only a few points, you may get a systematic
error in the fault angles [18].

Gale has two ways of solving this problem. One is to just set the minimum viscosity. This robustly solves
the �rst problem. It also, in a sense, solves the second problem. Consider a model problem where two blocks
are sliding against each other as in Figure 4.1. If the yielding stress only depends on cohesion, then a length
scale naturally comes out

Lηmin
=
ηminv

C
,

where ηmin is the minimum viscosity, v is the velocity of the sliding blocks, and C is the cohesion.

V

Vyielding region
Figure 4.1: Two blocks sliding past each other with a yielding region between them.

4.2. ADVANCED USAGE 21

For a general Drucker-Prager rheology, though, the yield stress depends on the pressure as well. In that
case, as you look at material deeper and deeper in the earth, where the pressure, and hence yield stress, is
higher, then the length scale will get shorter and shorter. If you set ηmin such that, at the surface, you get
a reasonable length scale for your resolution, then the length scale will be much smaller and unresolved in
the mantle.

So the other solution Gale provides is to set a maximum strain rate. It does this by looking at what the
strain rate is, and making sure that the viscosity is not set so low such that the strain rate will exceed the
maximum strain rate. This provides a length scale even more simply

Lε̇max
=

v

ε̇max
.

In practice, both of these quantities may need to be set. A minimum viscosity may assist in taming
irregularities arising from activities on the surface, such as landslides. A maximum strain rate, in the mean
time, will assist in ensuring that the code is convergent.

4.2.2 Direct Solvers

If you have a problem with strong viscosity gradients, the default solver (GMRES) may converge very slowly.
Strong viscosity gradients occur when you start with materials with di�erent viscosities (e.g., Appendix B.1),
or when materials yield.

One solution is to use a direct solver instead of GMRES. PETSc has a facility where you can use
command-line arguments to change the solver. For example, on a single machine, to use a direct LU solve,
you only need to append arguments to the command line

./Gale-2_0_0 input/cookbook/yielding.json -pc_type lu -ksp_type preonly

In parallel, the analogous approach would be to use Mumps, a parallel direct solver. You �rst need to make
sure that your version of PETSc was installed with Mumps. If you built PETSc yourself, you need to add
the option �--download-mumps=yes� when con�guring.

Once that is done, enabling it is again just appending a few arguments to the command line

./Gale-2_0_0 input/cookbook/yielding.json -pc_factor_mat_solver_package mumps \

-ksp_type preonly -pc_type lu -mat_mumps_icntl_14 100

Note that this is di�erent from previous versions of Gale. PETSc changed the syntax for calling Mumps
solvers. Also, Mumps changed the default amount of memory it allocates. This is not an issue for small
simulations, but larger simulations can easily run out of memory. The option �-mat_mumps_icntl_14 100�
tells Mumps to allocate more memory.

4.2.3 Command-Line Parameters

You can also change the default values of the input �le without modifying that �le by appending arguments.
For example, to change only the number of time steps from the default value of 10 to 20, use the following
command

./Gale-2_0_0 input/cookbook/yielding.json --maxTimeSteps=20

You can append any number of modi�ed parameters in one unbroken line (here shown wrapped around)

./Gale-2_0_0 input/cookbook/yielding.json --maxTimeSteps=20 --dim=3 --elementResI=64

--elementResJ=64 --elementResK=64 --particlesPerCell=60 --checkpointEvery=10

22 CHAPTER 4. RUNNING GALE

4.2.4 Checkpointing

Gale can save the state of the simulation so that it can be restarted from that point. To save the state for
every time step, add the line

�checkpointEvery�: �1�

to the variables at the end of the input �le or add

--checkpointEvery=1

to the command line. To restart from step 5, add

--restartTimestep=5

to the command line.
Not all of the example input �les save and restore the temperature. To enable that, see Section A.2.

4.2.5 Debugging Input Files

It can often happen that you set up an input �le incorrectly and try to run it, but Gale never gets far enough
to clearly tell you what you did wrong. The �rst thing you should do is to turn on verbose output as in
Section A.14. That way, you can look at the residual for the linear and non-linear solvers. If the residuals
go up and down, even after a number of iterations, then the solver will probably not converge. On the other
hand, if the residuals go steadily down, you can determine whether you should try di�erent input parameters
or just wait longer.

Even with that, you may not know what to �x. For example, you may have unwittingly set the minimum
viscosity for a yielding material to be too low. If the non-linear solver never converges, then you will not be
able to see that you speci�ed too low of a minimum viscosity. One way to get around this is to temporarily
set the tolerance for the non-linear solver (nonLinearTolerance) to be very large. Another way is to set
the maximum number of non-linear iterations (nonLinearMaxIterations) to be relatively small. Then Gale
will produce output that, while it may not be a good solution to the Stokes equations, nevertheless gives
you clues on how to �x the input �le.

4.3 Output and Visualization

The sample input �les will produce a directory in which you will �nd a number of �les. The easiest way to
visualize results is to use the XDMF �les. These �les are in a standard, self-describing �le format that can
be easily visualized with several di�erent visualization programs, e.g., ParaView (paraview.org) and Visit
(www.llnl.gov/visit). Visit is recommended as it is easy to get working, easy to use, and scales to large
data sets.

XDMF visualization �les are created at the same time as checkpoints. So to change the frequency at
which Gale outputs XDMF �les, change the parameter checkpointEvery.

paraview.org
www.llnl.gov/visit

4.3. OUTPUT AND VISUALIZATION 23

4.3.1 Basic Visualization with Visit

These instructions are for Visit version 2.3.2. To visualize the output of input/cookbook/yielding.json,

1. Start Visit and open a new data �le: File . Open

24 CHAPTER 4. RUNNING GALE

2. A �le dialog screen will appear. Navigate to the output directory. Visit will automatically group similar
�les together. Select the XDMF �les. Now click the Add button under Plots. Select Pseudocolor, then
FEM_Grid_v-mesh, then StrainRateInvariantField.

4.3. OUTPUT AND VISUALIZATION 25

3. Now click on Draw and you will get a picture of the StrainRateInvariant at the �rst time step.

26 CHAPTER 4. RUNNING GALE

4. You can plot the pressure by clicking again on the Add button, selecting Pseudocolor, then FEM_Grid_pressure-mesh,
then PressureField. Finally, click on Draw. The resolution is rather low, so the pressure solution is
very rough.

4.3. OUTPUT AND VISUALIZATION 27

5. Now you can plot the velocity as arrows on top of the pressure: Click on the Add button, select Vector,
then FEM_Grid_v-mesh, then VelocityField. Press Draw and you will see the velocity arrows colored
by the velocity magnitude.

28 CHAPTER 4. RUNNING GALE

6. You can temporarily hide the pressure by clicking on Pseudocolor - FEM_Grid_pressure-mesh/PressureField

and then clicking on the Hide/Show button. Repeat this with Pseudocolor - FEM_Grid_v-mesh/StrainRateField

to see a clearer view of the velocity arrows.

4.3. OUTPUT AND VISUALIZATION 29

7. To change the color of the arrows, click on the PlotAtts menu item near the top. Select Vector in
the drop down menu. This will bring up a new Vector plot attributes window.

30 CHAPTER 4. RUNNING GALE

Click on the Rendering tab at the top. Under the Color section, select Constant.

4.3. OUTPUT AND VISUALIZATION 31

Click on Apply to apply the changes, then Dismiss to get rid of the Vector plot attributes

window.

32 CHAPTER 4. RUNNING GALE

8. Now you can look at the particles. Hide the velocity arrows by clicking on Vector - FEM_Grid_v-mesh/VelocityField

and then the Hide/Show button. Click the Add button, select Pseudocolor, then materialSwarm, then
materialSwarm-Viscosity. As before, �nish by clicking the Draw button.

4.3. OUTPUT AND VISUALIZATION 33

9. The particles are a bit small to see. To increase their size, start by clicking on the PlotAtts menu
item and selecting Pseudocolor. This brings up the Pseudocolor plot attributes window.

34 CHAPTER 4. RUNNING GALE

Change Point size to 5, press Apply and then Dismiss to get a view with larger particles.

This displays the viscosity of the particles. The red points represent the high viscosity ball, while
the blue points represent material that has yielded. You can animate the view by pressing the arrow

button .

4.3. OUTPUT AND VISUALIZATION 35

10. Now we will visualize a 3D simulation. First delete all of the existing plots by clicking the Delete

button until they are all gone. Then click the Close button to get rid of the 2D plots. Run Gale with
the input �le input/cookbook/extension3D.json and open the XDMF �les. As with the 2D input,
add the strain rate invariant and click Draw.

Press and hold button 1 on your mouse to rotate the �gure. Hold button 1 and the Control or Shift
key to translate. Hold button 3 or use the mouse wheel to zoom in and out. To reset the view, press
button 2 to bring up the context menu and select Reset View.

36 CHAPTER 4. RUNNING GALE

4.4 Gauging Accuracy

Gale makes a number of approximations. Before trusting any results you get from Gale, you must vary a
number of parameters to ensure that the results are not an artifact of Gale's approximations.

The most obvious parameter to vary is the mesh resolution. The grid is where the Stokes equations are
solved, and de�nes the resolution of everything de�ned on a mesh (e.g., velocity, pressure, strain rate, etc.).
The resolution of the grid is determined by nx, ny, and nz.

But sometimes the mesh resolution is not the principal source of error. For example, for the 2D Divergence
benchmark (Section B.3), the principal source of error is the tolerance in the linear solver. This is because
the solution can be represented exactly on even a tiny grid, so the determining factor is just how well
the equations are solved on the mesh. To vary the tolerance for the linear solve, change the parameter
linearTolerance.

Similarly, the tolerance for the non-linear solve may determine the overall error. You can set that toler-
ance with the parameter nonLinearTolerance. However, the solver can still initially settle on a wrong
solution. Then, after many iterations, it may �nd the correct solution. To enforce this, you can set
nonLinearMinIterations and the solver will keep iterating even if it thinks it has already found a so-
lution.

It is also possible that the number of particles determines the error. There is a more or less constant
number of particles per mesh element. If you have a smooth velocity �eld, but a complex particle properties
�eld, you may need more particles for each element. To set the particle resolution, change the parameter
particlesPerCell.

When using a yielding rheology, you should vary minimumViscosity and maxStrainRate (see Section
4.2.1).

For some problems where you are comparing against a solution over an in�nite domain (e.g. Sections
B.1, B.2), then you may need to vary the size of the box (minX, minY, minZ, maxX, maxY, maxZ). Finally, you
may need to vary the scaling factor for time steps (dtFactor) (see Section A.1.4).

How much to vary the various parameters depends upon each parameter. For some parameters, such as
the resolution, changing it by a factor of two is often good enough to tell whether your error depends on
resolution. For others, such as the tolerance for the solver, you may want to vary it by a factor of ten.

Chapter 5

Cookbooks

5.1 Introduction

In this chapter, you will edit a template �le (input/cookbook/template.json) to create a series of input
�les. The template �le is in JSON format ((http://json.org)). JSON is a lightweight data-interchange
format that is easy for humans and machines to read and write.

5.1.1 Adding Lines to the Template File

Unless otherwise speci�ed, when you are instructed to add components to the input �le1, that text should
be added after the lines

�components�:

{

at the beginning of the �le, and before the matching brace just before �velocityBCs�.
All items are separated by commas �,�. So if you are adding something to the end of a section, you will

have to add a comma after the last item before adding your item. If you delete an item at the end, you must
also delete the trailing comma. It is very easy to forget to add or delete a comma. If you do so, Gale should
give you an error telling you what line the error is on.

The template �le is indented to make it easier to for you to understand. This is solely for your bene�t.
Gale does not pay attention to indentation when reading the �les. You may also add comments with a
syntax like

// This is a comment

Everything on the line following '//' will be ignored.

5.1.2 Adding Variables to the Template File

When you are instructed to add a variable, add it at the end of the �le before the closing bracket. As with
components, if you add a variable at the end, you must �rst add a comma and then add the new item.

5.2 Viscous Material

This example simply �lls up the computational domain with a single viscous material. It is a valid input
�le, but it is not very interesting as nothing is moving. This �le mainly serves as the basis for subsequent
examples.

1To copy and paste from this PDF with Adobe Acrobat, right click to get the context menu and select �Allow Hand Tool to
Select Text.�

37

http://json.org

38 CHAPTER 5. COOKBOOKS

1. First, copy template.json to myviscous.json to edit as follows.

2. Add in a material. The simplest variety is a purely viscous material, so add a shape covering the whole
domain:

,

�backgroundShape�:

{

�Type�: �EquationShape�,

�equation�: �1�

},

EquationShape de�nes a shape to be wherever equation>=0. Since equation=1, that is true every-
where. Notice that we added a comma before backgroundShape. In anticipation of more items, we
also added a comma after the closing brace of backgroundShape.

3. Then set the material's viscosity

�backgroundViscosity�:

{

�Type�: �MaterialViscosity�,

�eta0�: �1.0�

},

Remember that Gale has no internal knowledge of units, so if you think of everything in cgs, then this
implies a viscosity of 1 g

cms .

4. Finally, create the material using the components just created.

�viscous�:

{

�Type�: �RheologyMaterial�,

�Shape�: �backgroundShape�,

�density�: �1.0�,

�Rheology�: [

�backgroundViscosity�,

�storeViscosity�,

�storeStress�

]

}

The storeViscosity and storeStress parameters are standard components that enable you to get
the viscosity and stress information on each particle.

You can compare your result with the worked example in the �le input/cookbook/viscous.json.

5.3 Viscous Material in Simple Extension

The input �le you created in Section 5.2 is valid, but nothing moves. In this example, you will make the
material extend by having the right boundary move.

1. Copy myviscous.json to myextension.json.

2. Make the right boundary move by changing the line after this section

5.4. VISCOUS MATERIAL WITH COMPLEX BOUNDARIES 39

�type�: �WallVC�,

�wall�: �right�,

�variables�: [

{

�name�: �vx�,

from

�value�: �0�

to

�value�: �1.0�

Warning: There are several WallVC structs: left, right, top and bottom. Here we have
only modi�ed the right side.

A worked example is at input/cookbook/extension.json. Figure 5.1 shows the strain rate invariant and
velocity (see Section 4.3.1).

Figure 5.1: Strain rate invariant and velocity of viscous material in extension

5.4 Viscous Material with Complex Boundaries

Another exercise is to make the bottom boundary move di�erently, and not just have the material slide
along. In particular, this example will simulate a box like in Figure 5.2, where the bottom right side of the
box moves, but the viscous material sticks to the bottom left.

��������������������������������������

Figure 5.2: Split Boundary

1. First, copy myextension.json to mysplit.json

2. Modify the bottom boundary condition of WallVC to

40 CHAPTER 5. COOKBOOKS

�type�: �WallVC�,

�wall�: �bottom�,

�variables�: [

{

�name�: �vx�,

�value�: �step(x-1)�

},

{

�name�: �vy�,

�value�: �0.0�

}

]

A worked example is in the �le input/cookbook/split.json. Figure 5.3 shows the strain rate invariant and
velocity (see Section 4.3.1). The strain rate is concentrated around the step function in the bottom velocity
boundary. Notice the development of a basin above the discontinuity. The ability to track the development
of topography on the free surfaces is one of the strengths of Gale.

Figure 5.3: Strain rate invariant and velocity with complex boundaries

5.5 Viscous Material with Boundary Conditions Read From a File

You may want to specify custom boundary conditions that are not already implemented. For this, you can
set boundary conditions using date from a �le. For this example, we will replace the sharp step function
with an smoother approximation. The data is in the �le input/cookbook/velocities. To get Gale to use
it:

1. Copy myextension.json to myfile.json

2. Modify the bottom boundary condition of WallVC to

�type�: �WallVC�,

�wall�: �bottom�,

�variables�: [

{

�name�: �vx�,

�type�: �func�,

�value�: �File1�

},

{

�name�: �vy�,

�value�: �0�

5.6. VISCOUS MATERIAL WITH INFLOW/OUTFLOW BOUNDARIES 41

}

]

3. Specify the particulars of the �le by adding the variables

,�File1_Name�: �input/cookbook/velocities�,

�File1_Dim�: �0�,

�File1_N�: �102�

to the end of the �le (just before the last bracket �}�).

There is a fully worked out example in input/cookbook/file.json.

Figure 5.4: Strain rate invariant and velocity with boundary conditions read from a �le

5.6 Viscous Material with In�ow/Out�ow Boundaries

This example implements a di�erent kind of boundary condition, where material �ows in one side and out
another as in Figure 5.5. The current example is not intended to be geologically realistic in any sense, but
is meant to illustrate the �exibility we have in the development of complex boundary conditions.

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��

Figure 5.5: In�ow/Out�ow Boundary

1. Copy the �le myviscous.json that you created in Section 5.2 to myinflow_outflow.json.

2. Then, add the following lines after the wrapTop line so that Gale keeps the left and bottom sides �xed:

,�staticLeft� : �True�,

�staticBottom� : �True�

3. Now specify the velocity on the boundaries. For the left boundary, modify the left WallVC to

42 CHAPTER 5. COOKBOOKS

�type�: �WallVC�,

�wall�: �left�,

�variables�: [

{

�name�: �vx�,

�value�: �step(y-0.1)*step(0.2-y)�

}

]

4. For the bottom boundary, modify the bottom WallVC to

�type�: �WallVC�,

�wall�: �bottom�,

�variables�: [

{

�name�: �vx�,

�value�: �step(x-0.9)*step(1.1-x)�

},

{

�name�: �vy�,

�value�: �-step(x-0.9)*step(1.1-x)�

}

]

A worked example is in the �le input/cookbook/inflow_outflow.json. Figure 5.6 shows the strain rate
invariant and velocity.

Figure 5.6: Strain rate invariant and velocity with in�ow/out�ow boundaries

5.7 Viscous Material in Extension with Normal Stress Boundaries

This example modi�es the extension example in Section 5.3 to use a stress boundary normal to the bottom
surface, instead of specifying the velocity. A normal stress boundary condition simulates the e�ect of material
below the material pushing up, supporting the material in the box. Then, when material piles up, gravity
forces will overcome the stress boundary and �ow out of the simulation. Conversely, if material is thinned
out, the stress boundary will push new material into the simulation. This kind of boundary is often more
relevant for geological simulations.

1. Copy myextension.json to mynormal_stress.json

5.7. VISCOUS MATERIAL IN EXTENSION WITH NORMAL STRESS BOUNDARIES 43

2. Remove the current bottom boundary condition by removing the lines

},

{

�type�: �WallVC�,

�wall�: �bottom�,

�variables�: [

{

�name�: �vy�,

�value�: �0�

}

]

Notice that we removed the preceding bracket with comma �},� and left the trailing bracket �}�.

3. Add in a StressBC component

,�stressBC�:

{

�Type�: �StressBC�,

�ForceVector�: �mom_force�,

�wall�: �bottom�,

�normal_value�: �0.35-y�

}

This force emulates a hydrostatic pressure which increases with depth. The height of the material
above y = 0 is 0.35, and the density of the material is 1, so the stress needed to counteract gravity is
0.35− y.

4. The bottom essentially becomes an in�ow/out�ow boundary, so you need to prevent the bottom from
moving by adding after

�systems�: [

{

�mesh�: �v-mesh�,

�p-mesh�: �p-mesh�,

�remesher�: �velocityRemesher�,

�velocityField�: �VelocityField�,

�wrapTop�: �True�

the line

,�staticBottom�: �True�

5. When you deleted the bottom boundary condition, the vertical velocity became unspeci�ed. Recall
that the momentum equation (Equation 2.2) only depends on the derivative of the velocity. So stress
boundary conditions cannot set the overall magnitude of the velocity. To �x this, you can �x the
material to the sides of the simulation. You do this by adding

,{

�name�: �vy�,

�value�: �0.0�

}

in two places: after

44 CHAPTER 5. COOKBOOKS

�type�: �WallVC�,

�wall�: �left�,

�variables�: [

{

�name�: �vx�,

�value�: �0.0�

},

and after

�type�: �WallVC�,

�wall�: �right�,

�variables�: [

{

�name�: �vx�,

�value�: �1.0�

},

A worked example is at input/cookbook/normal_stress.json. Figure 5.7 shows the strain rate invariant
and velocity. Notice that material is now �owing in from the bottom.

Figure 5.7: Strain rate invariant and velocity of viscous material in extension with a normal stress boundary

5.8 Viscous Material with Deformable Bottom Boundary

The previous example can be modi�ed so that, instead of having material �ow through the bottom boundary,
the boundary itself deforms. You can do this by changing the one line

�staticBottom�: �True�

to

�wrapBottom�: �True�

A worked example is in input/cookbook/deforming_bottom.json. Figure 5.8 shows the strain rate invari-
ant and velocity.

5.9. VISCOUS MATERIAL WITH INITIALLY DEFORMED UPPER BOUNDARY 45

Figure 5.8: Strain rate invariant and velocity of viscous material with a deformable bottom boundary

5.9 Viscous Material with Initially Deformed Upper Boundary

All of the previous examples are set up as a regular rectangular box. However, Gale can also start with the
top initially deformed, such as if we had a mountain range with substantial topography. This example will
make it sinusoidal as in Figure 5.9. This example has no moving boundaries, so the material will simply
relax.

Figure 5.9: Sinusoidal Top

1. Copy myviscous.json to mysinusoid.json.

2. Add a SurfaceAdaptor component:

,�surfaceAdaptor�:

{

�Type�: �SurfaceAdaptor�,

�mesh�:�v-mesh�,

�sourceGenerator�: �v-mesh-generator�,

�topEquation�: �0.1*sin(2*pi*x)�

}

A worked example is in input/cookbook/sinusoid.json. Figures 5.10 and 5.11 shows the strain rate
invariant and velocity (see Section 4.3.1) at the beginning and after the tenth timestep. Note that the
material has �attened out and the magnitude of the velocity and strainrate has reduced considerably.

46 CHAPTER 5. COOKBOOKS

Figure 5.10: Strain rate invariant and velocity with initially deformed upper boundary

Figure 5.11: Strain rate invariant and velocity with initially deformed upper boundary

5.10 Viscous Material with Fixed, Deformed Bottom Boundary

This example deforms the bottom boundary and keeps it �xed. We will set the left half of the boundary
to follow a circle, while the right half will still be �at. Then, the boundary condition for the velocity is
set to move the material in from the left and out through the bottom as in Figure 5.12. This is meant to
approximate one slab subducting under another.

1. Copy myinflow_outflow.json to myfixed_bottom.json

2. Add a SurfaceAdaptor component for the bottom boundary:

,�surfaceAdaptor�:

{

�Type�: �SurfaceAdaptor�,

�mesh�: �v-mesh�,

�sourceGenerator�: �v-mesh-generator�,

�bottomEquation�: �step(0.960468635615-x)*(-3 + sqrt(3.15*3.15 - x*x))�

}

3. In the boundary conditions, replace

5.10. VISCOUS MATERIAL WITH FIXED, DEFORMED BOTTOM BOUNDARY 47

r_inner=3.15

r_outer=3.35

width=2

height=.35

Figure 5.12: Geometry and boundary conditions for the �xed, deformed bottom boundary

�value�: �step(y-0.1)*step(0.2-y)�

with

�value�: �r=hypot(x,y+3), step(3.35-r)*(y+3)�

and replace

�type�: �WallVC�,

�wall�: �bottom�,

�variables�: [

{

�name�: �vx�,

�value�: �step(x-0.9)*step(1.1-x)�

},

{

�name�: �vy�,

�value�: �-step(x-0.9)*step(1.1-x)�

}

]

with

�type�: �WallVC�,

�wall�: �bottom�,

�variables�: [

{

�name�: �vx�,

48 CHAPTER 5. COOKBOOKS

Figure 5.13: Strain rate invariant and velocity for a deformed bottom boundary

�value�: �r=hypot(x,y+3), step(3.35-r)*(y+3)�

},

{

�name�: �vy�,

�value�: �r=hypot(x,y+3), -step(3.35-r)*x�

}

]

4. Ensure that the height of the incoming material remains �xed by adding

�staticLeftTop� : �True�,

in the EulerDeform struct, right after

�staticLeft� : �True�,

A worked example is in input/cookbook/fixed_bottom.json. Figure 5.13 shows the strain rate invariant
and velocity.

5.11 Extension in 3D with topography

This example extends the simulation into 3D, adding initial topography and a deformed bottom.

1. Copy myextension.json to myextension3D.json.

2. Add a SurfaceAdaptor component

,"surfaceAdaptor":

{

"Type": "SurfaceAdaptor",

"mesh":"v-mesh",

"sourceGenerator": "v-mesh-generator",

"topSurfaceType": "topo_data",

"topSurfaceName": "input/cookbook/test.topo",

"topNx": "32",

"topNz": "12",

"topMinX": "minX",

"topMaxX": "maxX",

"topMinZ": "minZ",

5.12. TRACERS 49

"topMaxZ": "maxZ",

"bottomEquation": "x<1 ? -0.1*x : -0.1"

}

This component reads in data from the �le test.topo to set the initial height. It also sets the bottom
to have a slope that �attens out.

3. Add velocity conditions for the front and back

{

"type": "WallVC",

"wall": "front",

"variables": [

{

"name": "vz",

"value": "0.0"

}

]

},

{

"type": "WallVC",

"wall": "back",

"variables": [

{

"name": "vz",

"value": "0.0"

}

]

},

4. Change dim from 2 to 3.

A worked example is in input/cookbook/extension3D.json. Figure 5.14 shows the strain rate invariant
and velocity.

5.12 Tracers

This example adds tracer particles to track where material moves. These tracers play no active part in the
simulation, only observing the �elds as they follow the movements of the material.

1. Copy myfixed_bottom.json to tracers.json.

2. Enable tracers by adding

�enable-tracers�: true,

after

�FieldVariablesToCheckpoint�: [

�StrainRateInvariantField�,

�VelocityField�,

�PressureField�

],

3. Add a component laying out the initial positions of the particles

50 CHAPTER 5. COOKBOOKS

Figure 5.14: Strain rate invariant and velocity for a deformed bottom boundary

,�pLayout�:

{

�Type�: �ManualParticleLayout�,

�manualParticlePositions�: [

�asciidata�,

[�x�, �y�],

1.0, .1,

1.3, .1,

1.6, .1,

1.9, .1,

1.0, .2,

1.3, .2,

1.6, .2,

1.9, .2

]

},

and another component for controlling what �elds are output

�swarmOutput�:

{

�Type�: �TracerOutput�,

�Swarm�: �passiveTracerSwarm�,

�Fields� : [

�PressureField�,

�StrainRateInvariantField�

]

}

4. In order to see nice tracks, increase the number of timesteps by changing the line

�maxTimeSteps�: �10�,

to

5.13. MULTIPLE VISCOUS MATERIALS 51

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Figure 5.15: Particle tracks of tracers

�maxTimeSteps�: �100�,

After running this input �le you will see eight new �les in the output directory: swarmOutput.00000.dat, ...
swarmOutput.00007.dat. Inside each of these �les is a record of the time, position, pressure, and strain-rate
invariant that each particle saw as it traveled along. Plotting the particle tracks of all of these tracers gives
us Figure 5.15.

5.13 Multiple Viscous Materials

All of the previous examples have only one type of viscous material. This example will create a simulation
where there are multiple viscous materials such as in Figure 5.16.

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

Figure 5.16: Multiple Viscous Materials

1. Copy myextension.json (see Section 5.3) to mymulti_material.json.

2. Add the sphere.

�sphereShape�:

{

�Type�: �EquationShape�,

�equation�: �.1^2 - ((x-1)^2 + (y-.15)^2)�

},

52 CHAPTER 5. COOKBOOKS

3. Then add the new material.

,�sphereViscosity�:

{

�Type�: �MaterialViscosity�,

�eta0�: �10.0�

},

�sphereViscous�:

{

�Type�: �RheologyMaterial�,

�Shape�: �sphereShape�,

�density�: �1.0�,

�Rheology�: [

�sphereViscosity�,

�storeViscosity�,

�storeStress�

]

}

4. Change the shape of the original material so it is not inside the sphere. To do this, create a new shape
which is the old shape minus the sphere:

�nonsphereShape�:

{

�Type�: �Intersection�,

�shapes�:

[

�backgroundShape�,

�!sphereShape�

]

},

5. Finally, modify the original viscous material to use this new nonSphereShape by changing the line
after

�viscous�:

{

�Type�: �RheologyMaterial�,

from

�Shape�: �backgroundShape�,

to

�Shape�: �nonsphereShape�,

A worked example is in input/cookbook/multi_material.json. Figure 5.17 shows the strain rate invariant
and velocity,

5.14. YIELDING MATERIAL IN SIMPLE EXTENSION 53

Figure 5.17: Strain rate invariant and velocity with multiple viscous materials

and Figure 5.18 shows the viscosity of the particles.

Figure 5.18: Viscosities with multiple viscous materials

5.14 Yielding Material in Simple Extension

This example replaces the background viscous material with a yielding material. This will produce localiza-
tions as some material fails.

1. Copy mymulti_material.json to myyielding.json

2. Add a StrainWeakening component and a DruckerPrager component

�strainWeakening�:

{

�Type�: �StrainWeakening�,

�TimeIntegrator�: �timeIntegrator�,

�MaterialPointsSwarm�: �materialSwarm�,

�softeningStrain�: �0.1�,

�initialDamageFraction�: �0.0�,

�initialDamageWavenumber�: �0.5�,

�initialDamageFactor�: �0.5�,

�healingRate�: �0.0�

},

�yielding�:

{

�Type�: �DruckerPrager�,

�PressureField�: �PressureField�,

�VelocityGradientsField�: �VelocityGradientsField�,

�MaterialPointsSwarm�: �materialSwarm�,

�Context�: �context�,

�StrainWeakening�: �strainWeakening�,

54 CHAPTER 5. COOKBOOKS

�StrainRateField�: �StrainRateField�,

�cohesion�: �1.0�,

�cohesionAfterSoftening�: �0.0001�,

�frictionCoefficient�: �0.0�,

�frictionCoefficientAfterSoftening�: �0.0�,

�minimumViscosity�: �1.0e-4�

},

after backgroundViscosity.

3. Add this yielding rheology to the existing background material by inserting

�yielding�,

after

�viscous�:

{

�Type�: �RheologyMaterial�,

�Shape�: �nonsphereShape�,

�density�: �1.0�,

�Rheology�: [

�backgroundViscosity�,

A worked example is in input/cookbook/yielding.json. Figure 5.19 shows the strain rate invariant and
velocity. A fault has developed on the left side.

Figure 5.19: Strain rate invariant and velocity of yielding material in extension

Figure 5.20 shows the viscosity of the particles,

Figure 5.20: Viscosity of yielding material in extension

5.15. THERMAL CONVECTION 55

and Figure 5.21 shows the accumulated post-yielding strain of the particles.

Figure 5.21: Accumulated post-yielding strain of yielding material in extension

5.15 Thermal Convection

Temperature can play a decisive role in geophysical processes. This example takes the multiple viscous
material example from Section 5.13, heats it on the bottom, and adds in radiogenic heating throughout.

1. Copy mymulti_material.json to mythermal.json

2. Enable the thermal components by adding

�enable-thermal�: true,

after

�FieldVariablesToCheckpoint�: [

�StrainRateInvariantField�,

�VelocityField�,

�PressureField�

],

3. Add in temperature boundary conditions after the velocity boundary conditions

�temperatureBCs�: {

�type�: �CompositeVC�,

�vcList�: [

{

�type�: �WallVC�,

�wall�: �left�,

�variables�: [

{

�name�: �temperature�,

�value�: �1.0�

}

]

},

{

�type�: �WallVC�,

�wall�: �right�,

�variables�: [

{

�name�: �temperature�,

56 CHAPTER 5. COOKBOOKS

�value�: �1.0�

}

]

},

{

�type�: �WallVC�,

�wall�: �top�,

�variables�: [

{

�name�: �temperature�,

�value�: �1.0�

}

]

},

{

�type�: �WallVC�,

�wall�: �bottom�,

�variables�: [

{

�name�: �temperature�,

�value�: �2.0�

}

]

}

]

},

4. Add in initial conditions for the temperature after the boundary conditions

�temperatureICs�:

{

�type�: �CompositeVC�,

�vcList�: [

{

�type�: �AllNodesVC�,

�variables�:[

{

�name�: �temperature�,

�value�: �1.0�

}

]

}

]

},

5. Specify the background material's thermal expansivity, thermal di�usivity, radiogenic heating rate,
and radiogenic decay time scale by adding after

�viscous�:

{

�Type�: �RheologyMaterial�,

�Shape�: �nonsphereShape�,

�density�: �1.0�,

the lines

5.15. THERMAL CONVECTION 57

�alpha�: �1.0�,

�diffusivity�: �1.0�,

�heatingElements�: [

{

�Q�: �1.0�,

�lambda�: �1.0�

}

],

For the sphere, after the lines

�sphereViscous�:

{

�Type�: �RheologyMaterial�,

�Shape�: �sphereShape�,

�density�: �1.0�,

add the lines

�alpha�: �10.0�,

�diffusivity�: �10.0�,

�heatingElements�: [

{

�Q�: �1000.0�,

�lambda�: �10.0�

}

],

This makes the sphere more expansive, conductive, and radioactive.

6. Modify the buoyancy force term by adding the temperature �eld

,�TemperatureField�: �TemperatureField�

after the lines

�buoyancyForceTerm�:

{

�Type�: �BuoyancyForceTerm�,

�ForceVector�: �mom_force�,

�Swarm�: �gaussSwarm�,

�gravity�: �gravity�

7. The deforming mesh requires some adjustments to the advection terms. Enable this by adding

�T-mesh�: �T-mesh�,

�displacementField�: �DisplacementField�,

after

�EulerDeform�:

{

�systems�: [

{

�mesh�: �v-mesh�,

�p-mesh�: �p-mesh�,

58 CHAPTER 5. COOKBOOKS

8. Add temperature as a checkpoint variable by inserting

�TemperatureField�,

after

�FieldVariablesToCheckpoint�: [

�StrainRateInvariantField�,

�VelocityField�,

9. Finally, to highlight the e�ects of temperature, make the boundary move more slowly by changing the
line after

�type�: �WallVC�,

�wall�: �right�,

�variables�: [

{

�name�: �vx�,

from

�value�: �1.0�

to

�value�: �0.01�

A worked example is in thermal.json. Figure 5.22 shows the temperature and velocity.

Figure 5.22: Temperature and velocity for the thermal convection example

5.16 Thermal Convection with Initial Conditions from a File

There are a number of di�erent functions that you can use as initial conditions for the temperature (see
Appendix A.11). This example shows how to use data from a �le as your initial condition. The data used
for this �le is in input/cookbook/temperature, and sets the initial temperature inside the box to

1 + 0.05 cos(6x) cos(10y).

1. Copy mythermal.json to mythermal_file.json.

5.16. THERMAL CONVECTION WITH INITIAL CONDITIONS FROM A FILE 59

2. In the temperatureICs struct, change the line after

�type�: �AllNodesVC�,

�variables�:[

{

�name�: �temperature�,

from

�value�: �1.0�

to

�type�: �func�,

�value�: �File1�

3. Add in the lines

,�File1_Name�: �input/cookbook/temperatures�,

�File1_Dim�: �0�,

�File1_N�: �202�,

�File1_Dim2�: �1�,

�File1_N2�: �37�

at the end of the �le, just before the last bracket �}�.

4. Increase the vertical resolution a little by changing

�ny�: �4�,

to

�ny�: �8�,

A worked example is in thermal_file.json. Figure 5.23 shows the temperature and velocity at the end of
the calculation.

Figure 5.23: Temperature and velocity when using temperature initial data from a �le.

60 CHAPTER 5. COOKBOOKS

5.17 Pure Thermal

This example turns o� the Stokes solver and only evolves the temperature. Since the Stokes equations are
not solved, the velocity must be speci�ed independently. This also means that variables like strain rate and
viscosity are no longer needed.

1. Copy mythermal.json to mythermal_only.json.

2. Delete the buoyancyForceTerm component.

3. Remove the references to viscosity and stress in the materials by changing the viscous component to

"viscous":

{

"Type": "Material",

"Shape": "nonsphereShape",

"diffusivity": "1.0",

"heatingElements": [

{

"Q": "1.0",

"lambda": "1.0"

}

]

},

and change the sphereViscous component to

"sphereViscous":

{

"Type": "Material",

"Shape": "sphereShape",

"diffusivity": "10.0",

"heatingElements": [

{

"Q": "1000.0",

"lambda": "10.0"

}

]

}

4. Replace the velocity boundary condition velocityBCs with

�velocityICs�:

{

�type�: �CompositeVC�,

�vcList�: [

{

�type�: �AllNodesVC�,

�variables�:[

{

�name�: �vx�,

�value�: �0.0�

},

{

�name�: �vy�,

�value�: �0.0�

5.18. POWER LAW CREEP 61

}

]

}

]

},

5. Remove the strain rate and pressure as checkpointed variables by replacing

�FieldVariablesToCheckpoint�: [

�StrainRateInvariantField�,

�VelocityField�,

�TemperatureField�,

�PressureField�

],

with

�FieldVariablesToCheckpoint�: [

�VelocityField�,

�TemperatureField�

],

6. Disable Stokes by adding

�enable-stokes�: false,

right after

�enable-thermal�: true,

Figure 5.24 shows the temperature at the end of the calculation.

Figure 5.24: Temperature and velocity when using temperature initial data from a �le.

5.18 Power Law Creep

A common approximation for the rheology of rocks is power law creep. This example shows how to implement
this with the NonNewtonian rheology as described in Section A.4.2.4.

1. Copy mythermal.json to mynon_newtonian.json.

62 CHAPTER 5. COOKBOOKS

Figure 5.25: Temperature and velocity for the power-law creep model

2. Replace the backgroundViscosity component with

�nonNewtonian�:

{

�Type�: �NonNewtonian�,

�StrainRateInvariantField�: �StrainRateInvariantField�,

�TemperatureField�: �TemperatureField�,

�n�: �3.4�,

�T_0�: �1.0�,

�A�: �1.0�,

�refStrainRate�: �0.01�

},

3. In the viscous material, change backgroundViscosity to nonNewtonian.

A worked example is in non_newtonian.json. Figure 5.25 shows the temperature and velocity. The di�er-
ences with the example in Figure 5.22 are mostly because the viscosity is higher everywhere.

Appendix A

Input File Format

A.1 Structure

The input �les are in the JSON format ((http://json.org)). This leverages a well-known format to specify
concepts like hierarchies, lists, parameters, and arbitrary structures. The entire �le is enclosed within brackets
�{� and �}�. Within those brackets, there are four parts of a Gale input �le: components, EulerDeform,
variable conditions, and variables.

Internally, the JSON input �les are converted to XML and then parsed. During that process, a number
of components are added by default, such as the mesh, the velocity �eld, and particles. Gale writes out
this XML into the �le input.xml in the output directory. If you create your own version of these default
components in your JSON input �le, your versions will take precedence.

Previous versions of Gale used XML as the input �le format, and this scheme allows Gale to accept
either JSON or XML as input. Existing XML input �les will still work with minor modi�cations. See the
�le UPGRADE for the details of these modi�cations.

A.1.1 Components

The components section is separated o� from the rest of the �le with an enclosing components structure.
This components structure is where the bulk of the �le will be. It speci�es things like which material goes
where, what the material properties are, etc. Most of the ideas you need to specify your problem will go into
the components. When adding a new component, it is important to remember to put the new component
inside the components structure. Otherwise Gale will (silently) not use that component. For example, an
input �le such as

�components�:

{

�sphereShape�:

{

�Type�: �EquationShape�,

�equation�: �.1^2 - ((x-1)^2 + (y-.15)^2)�

}

}

will correctly initialize sphereShape, but the input �le

�components�:

{

},

�sphereShape�:

{

�Type�: �EquationShape�,

63

http://json.org

64 APPENDIX A. INPUT FILE FORMAT

�equation�: �.1^2 - ((x-1)^2 + (y-.15)^2)�

}

will not, and no error message will alert you of the problem.

A.1.2 EulerDeform

EulerDeform allows the upper surface to move freely or stay rigidly in place. If you do not have an
EulerDeform struct, then the mesh will not deform. An example EulerDeform struct is

�EulerDeform�:

{

�systems�: [

{

�mesh�: �v-mesh�,

�p-mesh�: �p-mesh�,

�remesher�: �velocityRemesher�,

�velocityField�: �VelocityField�,

�wrapTop�: �True�

}

]

},

Note the critical line

�wrapTop�: �True�

that makes the top surface conform to the simulation.
Additionally, Gale can �x the positions of the boundaries. For example, if you are running a shortening

model, normally Gale will move the boundaries inward as the simulation progresses. If di�erent parts of the
boundary are moving at di�erent rates (such as if you were simulating one slab sliding over the other), then
the side boundary would quickly become distorted and ruin the simulation. To �x the right boundary, set
the variable staticRight to True

�staticRight�: �True�

Similarly, you can independently set the left, top, bottom, front, and back boundaries.
Setting staticRight will make the right boundary immobile. You can make the whole boundary move

with a �xed velocity, by setting right_equation. So setting

�right_equation�: �10 - 0.01 * t�

will make the right side move from 10 inwards with a velocity 0.1. Similarly, you can make the left side move
by setting left_equation. If you are scaling units as in Section 2.2.8.3, be sure to scale the velocity here.

Note that this will only �x the interior of that boundary. So setting staticRight will not �x the top
right or bottom right corners (in 2D) and edges (in 3D). If you set both staticRight and staticBottom,
then the bottom right corner will also be �xed. Otherwise, you can set staticBottomRight to speci�cally
�x the bottom right corner.

If you set staticRight or staticLeft but do not �x the upper corners, then Gale will move the top
right or left corner to the boundary and interpolate the height. This is useful if material is �owing out and
you want the boundary of the mesh to vary as lumps go through. If material is actually �owing in, Gale will
be unable to interpolate and will complain.

The floatRightTop and floatLeftTop variables are useful when you are using a boundary layer (see
Sections A.4.3.3), and you want the height of the boundary layer to match the interior.

In general, Gale has three di�erent meshes: velocity, pressure, and temperature. Pure Stokes �ow only
has velocity and pressure meshes. Pure thermal �ow only has velocity and temperature meshes. The active

A.1. STRUCTURE 65

ones must be supplied to EulerDeform using the v-mesh, p-mesh, and T-mesh variables. Unless you change
something, these will be v-mesh, p-mesh, and T-mesh.

In addition, the energy equation (2.12) is an advection-di�usion equation. When the mesh distorts, the
advection needs to be modi�ed for consistency. When you enable thermal evolution, Gale automatically cre-
ates DisplacementField. Set displacementField to DisplacementField and Gale will make the necessary
corrections for advection.

Defaults

velocityField -
v-mesh -
p-mesh -
T-mesh -

DisplacementField -
wrapTop False
wrapLeft False
wrapRight False
staticRight False

staticRightTop False
staticRightBottom False
staticRightFront False
staticRightBack False

staticRightTopFront False
staticRightTopBack False

staticRightBottomFront False
staticRightBottomBack False

staticLeft False
staticLeftTop False

staticLeftBottom False
staticLeftFront False
staticLeftBack False

staticLeftTopFront False
staticLeftTopBack False

staticLeftBottomFront False
staticLeftBottomBack False

staticTop False
staticTopFront False
staticTopBack False
staticBottom False

staticBottomFront False
staticBottomBack False

staticFront False
staticBack False
�oatLeftTop False
�oatRightTop False
xRightCoord -
xLeftCoord -

A.1.3 Initial and Boundary Conditions

These sections specify initial and boundary conditions for the velocity and temperature. See Sections A.5.1,
A.5.4, and A.8 for more details.

66 APPENDIX A. INPUT FILE FORMAT

A.1.4 Variables

The last section is where most of our numeric constants are placed. For example, how many time steps, how
often to print output, etc. You may also declare variables for convenience (e.g., the number of grid points)
and use it elsewhere, such as in the components. The more important parameters are:

maxTimeSteps The number of time steps to take in the simulation. Each time step can cover a di�erent
amount of time. Gale determines how big of a step to take by dividing the grid size by the largest
velocity during that time step. Unfortunately, there is no way to stop at a maximum time.

enable-stokes Enable solution of the Stokes equations. The default is true.

enable-thermal Enable temperature evolution. The default is false.

enable-tracers Enable tracer particles. The default is false.

checkPointEvery How often to write the checkpoint �les (see Section 4.2.4).

outputPath The directory to put output �les in. Due to quirks in MPI, you may need to specify this as a
full path (e.g., /home/juser/simulations/myoutput) rather than a relative path (myoutput).

dim The number of dimensions of the problem (2 or 3).

minX,minY,minZ,maxX,maxY,maxZ The physical size of the box you are simulating. Note that this
may be modi�ed by SurfaceAdaptor (Section A.5.5).

nx,ny,nz The number of elements in each direction. Note that the number of grid points depends on the type
of element. The pressure mesh uses discontinuous linear elements (P−1) which have three grid points
per element in 2D and four grid points in 3D. So if nx=16, ny=32, then there will be 16*32*3=1536
pressure grid points. The temperature mesh uses linear elements (Q1) which have their grid points on
the corners. So the number of grid points is one larger than the number of elements (e.g., 64 elements
⇒ 65 grid points). Finally, the velocity mesh uses quadratic elements (Q2) which has grid points at
the corners and in between. So if nx=16, ny=32, there will be (16*2+1)*(32*2+1)=2145 velocity grid
points.

shadowDepth When running in parallel, every parameter only computes quantities over a portion of the
grid. To do this, each processor must keep copies of points that belong to other processors. This
parameter speci�es how wide the region of copied points is. You should never need to change this from
1.

particlesPerCell The ideal number of particles in each element. Gale will attempt to keep the number of
particles in each element close to this number. You will probably never need to change this from the
default (40).

dtFactor A factor to scale the time step. Ordinarily, Gale will automatically choose an appropriate step
size to ensure a stable solution. If you �nd that to be too large of a step size, you can change dtFactor
to a smaller number. The default is 1 (no scaling).

dt The size of the time step. Ordinarily, Gale will automatically choose an appropriate step size to ensure a
stable solution. For some purposes, it may be convenient to explicitly specify the time step. Be careful!
The time step will then be constant over the entire simulation. If the grid shrinks and/or velocities
become larger than you expect, you may end up with an unstable simulation. The default is 0, which
means to use dynamic time stepping.

defaultDi�usivity This is the default di�usivity for all materials. It also indirectly sets the time step. See
Section A.2.

maxTimeStepSize The maximum size of the time step. This limit is applied after dtFactor and dt.

seed A random number seed used when placing new particles. You should never need to change this variable,
since changing it should not a�ect the simulation.

A.2. TEMPERATURE COMPONENTS 67

Upper Lithosphere
Material

Lower Lithosphere
Material

Figure A.1: Areas covered by material box shapes and the computational domain.

A.2 Temperature components

To enable temperature evolution, set the variable enable-thermal to true. You will also need to enable
checkpointing for the temperature by adding the line TemperatureField to the list FieldVariablesToCheckpoint.

You need to specify the thermal di�usivity. You can specify a single di�usivity for all materials by setting
the variable defaultDiffusivity. You can override this default for each material (see Section A.4).

You will also need to add in initial and boundary conditions (see Sections A.5.4 and A.8). Finally, you
will need to set material properties for the buoyancy forces (see Section A.9) and radiogenic heating (see
Section A.4).

This should normally work without any tweaking. However, if your model has strongly distorted elements,
then you may see anomalously high temperature variations. To �x that, modify the prefactor for SUPG (see
Section 5.15) by setting the variable supgFactor to something smaller. A good �rst guess is to try 0.5. Note
that if you set supgFactor too small, then you may see other numerical artifacts.

A.3 Shapes

When setting up the simulation, Gale �rst creates the computational domain. That domain may be irregular
if you are using a SurfaceAdaptor (Section A.5.5). Gale then starts putting down materials within that
domain. When putting down a material at a particular point, Gale asks all of the materials (Section A.4)
whether that point belongs to that material. So it is perfectly �ne to have material shapes that cover more
than the computational domain. Figure A.1 shows an example with irregular top and bottom materials.
Materials for the upper and lower lithosphere are de�ned in large, regular boxes, but material is only created
within the blue region.

As a simple example, you can create a 3D box

68 APPENDIX A. INPUT FILE FORMAT

�box�:

{

�Type�: �Box�,

�startX�: �0.0�,

�endX�: �1.0�,

�startY�: �0.0�,

�endY�: �1.0�,

�startZ�: �0.0�,

�endZ�: �1.0�

}

You can perform operations on shapes to create new shapes. For example, if you also create a sphere

�sphere�:

{

�Type�: �EquationShape�,

�equation�: �1-(x*x + y*y + z*z)�

}

then you can compose it with the box to create a new shape

�nonSphere�:

{

�Type�: �Intersection�,

�shapes�: [

�box�,

�!sphere�

]

}

Note that the exclamation point �!� in front of simpleSphere means �not.� So this Intersection creates
a shape that is the intersection of the box and everywhere outside of the sphere. You can list an arbitrary
number of shapes in Intersection. Also, you can use Union to create a shape that covers all of the input
shapes.

In addition, every shape accepts the translation variables CentreX, CentreY, and CentreZ, and the Euler
angles alpha, beta, and gamma. So if you modify the Box example above to

�simpleBox�: {

�Type�: �Box�,

�CentreX�: �1.0�,

�startX�: �0.0�,

�endX�: �1.0�,

�startY�: �0.0�,

�endY�: �1.0�,

�startZ�: �0.0�,

�endZ�: �1.0�

}

then the box will actually span from x = 1 to x = 2.
The Euler angles use the y convention, �rst rotating about the original z axis an angle γ, then rotating

around the new y axis an angle β, and �nally a rotation around the new z axis an angle α. Speci�cally,
these rotations are expressed through the rotation matrix

R =

 − sinα sin γ + cosα cosβ cos γ sinα cos γ + cosβ sin γ cosα − cosα sinβ
− cosα sin γ − cosβ cos γ sinα cosα cos γ − cosβ sin γ sinα sinα sinβ

sinβ cosα sinβ sinα cosβ

 .

A.3. SHAPES 69

So when Gale attempts to �gure out whether a coordinate (x, y, z) is inside a shape, it creates a new
coordinate x′

y′

z′

 =

 x
y
z

−
 CentreX

CentreY
CentreZ

R,

which it uses in the formulas below. Note that the rotation is around the center of the shape. So, for
example, a box will rotate around the center of the box, not one of its corners.

Finally, you can command Gale to invert the shape with the invert variable, making the inside the
outside and vice versa.

Defaults

CentreX 0
CentreY 0
CentreZ 0
alpha 0
beta 0

gamma 0
invert False

A.3.1 EquationShape

This shape is de�ned by a user-de�ned equation. Speci�cally, a point is inside the shape if

equation >= 0.

So to de�ne a sphere centered at (1,2,1.5) with radius=5, set

�equation�: �5^2-((x-1)^2 + (y-2)^2 + (z-1.5)^2)�

A.3.2 Box

This is a simple rectangular box. A point is inside the shape if

startX < x < endX
startY < y < endY
startZ < z < endZ

Alternately, you can use widths, in which case

|x| < widthX/2
|y| < widthY/2
|z| < widthZ/2

.

You may mix and match these speci�cations (e.g., use start/end for x, and width for y). If both are speci�ed
for one coordinate, Gale will use start and end.

Defaults

widthX 0
widthY 0
widthZ 0

70 APPENDIX A. INPUT FILE FORMAT

A.3.3 PolygonShape

This is primarily a two-dimensional shape. The input to this shape is a list of vertices. To �gure out whether
a point is inside the polygon, Gale adds up all of the angles of the vectors going to the vertices. If the point is
inside the polygon, then the angles will sum to ±2π, depending on which direction you specify the vertices.
If the point is outside the polygon, then the angles sum to 0. A simple example is a triangle

�triangleShape�:

{

�Type�: �PolygonShape�

�vertices�: [

�asciidata�,

[�x�, �y�],

0.0, 0.0,

1.0, 0.0,

1.0, 1.0

]

}

This creates a triangle with vertices at (0,0), (1,0), (1,1).
You can extrude this shape into three dimensions by specifying startZ and endZ.

Defaults

startZ 0
endZ 0

A.4 Materials

Gale supports two kinds of rheologies: viscous and yielding. You can combine these two rheologies to create
a more realistic composite rheology. You then pair this composite rheology with a shape to actually lay
down material on the grid. As a simple example, you can create a viscous rheology

�viscousRheology�:

{

�Type�: �MaterialViscosity�,

�eta0�: �10.0�

}

and a Von Mises yielding rheology

�strainWeakening�:

{

�Type�: �StrainWeakening�,

�TimeIntegrator�: �timeIntegrator�,

�MaterialPointsSwarm�: �materialSwarm�,

�softeningStrain�: �0.1�,

�initialDamageFraction�: �0.0�,

�initialDamageWavenumber�: �0.5�,

�initialDamageFactor�: �0.5�,

�healingRate�: �0.0�

},

�yieldingRheology�:

{

�Type�: �VonMises�,

A.4. MATERIALS 71

�cohesion�: �10.0�,

�cohesionAfterSoftening�: �1.0�

}

and combine them together with materialShape (see Section A.3 on how to create shapes)

�yieldingMaterial�:

{

�Type�: �RheologyMaterial�,

�Shape�: �materialShape�,

�Rheology�: [

�viscousRheology�,

�yieldingRheology�

]

}

For each material, you can specify a density, a coe�cient of thermal expansivity (α), and a thermal di�usivity.
To make a pressure or temperature dependent density, set densityEquation instead of density. For
example, specifying

�densityEquation�: �p<1 ? 2 : 1�

will set the density to 2 when the pressure (p) is less than 1, and 1 otherwise. For temperature depen-
dence, use the variable T. Similarly, to set a pressure or temperature dependent thermal expansity, specify
alphaEquation instead of alpha.

The density and expansivity are used by the BuoyancyForceTerm component (see Section A.9.1) to create
buoyancy forces. The di�usivity is used by the temperature solver (see Section A.2).

You can also specify multiple radiogenic heating rates (Q) and radiogenic timescales (λ). This simulates
the action of multiple radioactive materials with di�erent half-lives. To enable this, you must provide a list
of Q's and λ's. For example, to specify two di�erent radioactive species, add something like

�heatingElements�: [

{

�Q�: �1.0�

�lambda�: �1.0�

},

{

�Q�: �2.0�

�lambda�: �2.0�

}

]

At time t, each radioactive element will generate

Qe−λt

units of energy.

Defaults

density 0
alpha 0

di�usivity 1
Q 0

lambda 0

72 APPENDIX A. INPUT FILE FORMAT

A.4.1 StoreVisc and StoreStress

These are not rheologies per se, but rather extra �elds where Gale saves the e�ective isotropic viscosity and
components of the stress tensor. For pure viscous materials, the e�ective viscosity will be the same as the
viscosity you supply. For yielding rheologies, the e�ective viscosity will change as the particle yields.

A.4.2 Viscous

A.4.2.1 MaterialViscosity

This is the simplest rheology. There is only one variable, the viscosity eta0.

Defaults

eta0 1

A.4.2.2 Frank-Kamenetskii

This is a temperature-dependent viscosity

eta = eta0 ∗ exp (−theta ∗ T) .

Defaults

eta0 1
theta 0

A.4.2.3 Arrhenius

This is another temperature dependent viscosity

eta = eta0 ∗ exp ((activationEnergy + activationV olume ∗ (height− y)) / (T + referenceTemperature)) .

Note that height is the height of the column, not the overall maximum height of the material. Also, height
does not consider material boundaries. So if you have an air layer, you may get surprising results.

Defaults

eta0 1
activationEnergy 0
activationVolume 0

referenceTemperature 1

A.4.2.4 NonNewtonian

This is a strain rate dependent rheology. It assumes that the material obeys the relation

ε̇ = Aτn exp (−T0/T) ,

where ε̇ is the strain rate, τ is the stress, and A , T0, and n are constants. Using

τ = 2ηε̇,

we can write the viscosity as

η =
ε̇

1
n−1 exp (T0/nT)

2A
1
n

.

When setting the viscosity for the �rst solve, the strain rate has not been calculated yet. So you must
supply a reference strain rate for that �rst step. Gale uses this viscosity to �nd a solution and thus a new
strain rate. Gale then iterates until the strain rate converges.

You may set maximum and minimum values for the resulting viscosity. If the temperature is greater
than the melting temperature, then the viscosity is just set to minViscosity.

A.4. MATERIALS 73

Defaults

n 1
T_0 0

T_melt ∞
A 1

refStrainRate -
minViscosity -
maxViscosity -

A.4.3 Yielding

Yielding rheologies are a bit more complicated.

A.4.3.1 StrainWeakening

First you need to create a StrainWeakening component. StrainWeakening is mainly used to de�ne an
initial distribution of strain in a material and to calculate the accumulated strain on each particle. To that
end, it requires a number of parameters.

TimeIntegrator This is the component used for time integration to accumulate strain. This will usually
be timeIntegrator.

MaterialPointsSwarm This is the swarm of particles associated with this rheology. This will usually be
materialSwarm.

healingRate With this parameter, accumulated strain can decrease. Speci�cally, the time derivative of
accumulated strain becomes

σyield
η

(
β

1− β
− healingRate

)
,

where β ≡ σyield/σ, σyield is the yield stress, σ is some measure of the current stress (e.g., the second
invariant of the stress tensor), and η is the isotropic viscosity. Note that the healing rate should be
between 0 and 1.

initialSofteningStrain The strain at which the material starts to yield.

�nalSofteningStrain The strain at which the material has fully yielded.

initialDamageFraction The chance that an individual material particle will have a non-zero initial strain.

initialDamageWaveNumber The wavenumber for the initial random strain. To avoid having initial strain
on the edges of the box, this should be set to the inverse of the horizontal length of the box.

initialDamageFactor The maximum initial random strain for a particle is
initialDamageFactor*finalSofteningStrain.

randomSeed A random number seed used when computing which particles are initially strained.

initialStrainShape If de�ned, the initial random strain will only occur within this shape (outside the shape
the initial random strain will be zero).

strainLimitedShape If de�ned, the strain within this shape will not grow beyond strainLimit.

strainLimit The maximum amount of strain allowed within strainLimitedShape.

For further reference, we de�ne a strain weakening ratio α ≡ min (1, γ/γsoftening), where γ is the accu-
mulated strain, and γsoftening is the softening strain. From that we de�ne the e�ective cohesion C ′ ≡
Cpristine (1− α) + Cyieldedα and e�ective friction coe�cient tanφ′ = tanφpristine (1− α) + tanφyieldedα.

74 APPENDIX A. INPUT FILE FORMAT

Defaults

TimeIntegrator none
MaterialPointsSwarm none

healingRate 0
initialsofteningStrain 0
�nalsofteningStrain ∞

initialDamageFraction 0
initialDamageWaveNumber -1.0

initialDamageFactor 1.0
randomSeed 0

initialStrainShape none

A.4.3.2 VonMises

This is the simplest yielding rheology in Gale. The yielding stress is simply the e�ective cohesion. Speci�cally,
the yielding condition speci�es √

J2 = C ′

where J2 is the second invariant of the deviatoric stress tensor. This rheology only has a few input parameters:

� cohesion and cohesionAfterSoftening have the obvious meanings.

� minimumYieldStress sets an absolute minimum to the stress required to make the material yield.

� StrainRateSoftening is a Boolean variable that changes how the constitutive matrix is modi�ed when
the material has yielded. If StrainRateSoftening is True, then the viscosity is set to

ηnew = 2C ′2η/
(
C ′2 + J2

)
.

This is a way of creeping up on the correct viscosity to avoid setting the viscosity too low. Otherwise
the viscosity is set to

ηnew = ηC ′/
√
J2,

which essentially sets the stress of the particle to the yield stress.

Defaults

cohesion 0
cohesionAfterSoftening 0
minimumYieldStress 0
StrainRateSoftening False

A.4.3.3 DruckerPrager

This rheology uses the same parameters as Von Mises, but also adds a friction coe�cient that can soften.
Speci�cally, the yield condition is √

J2 = Ap+B,

where p is the pressure. The value of the constants A and B are di�erent from 2D and 3D. In 2D, Drucker-
Prager and Mohr-Coulomb are identical. Speci�cally, if we write the Mohr-Coulomb yield stress as

σMC = C ′ + σ⊥ tanφ′,

then

A.4. MATERIALS 75

A = sinφ′

B = C ′ cosφ′
.

In 3D, the mapping between friction angles and cohesion to A and B is more complicated

A = 2 sinφ′√
3(3−sinφ′)

B = 6C′ cosφ′√
3(3−sinφ′)

.

You can also write a Mohr-Coulomb rheology in this form, but then the constants A and B depend on J2.
So reducing the viscosity does not result in a linear decrease in J2. This makes it di�cult for the code to
�nd a solution. In practice, the yield surface for Drucker-Prager and Mohr-Coulomb are not too dissimilar.
Mohr-Coulomb's yield surface is a six-sided cone, while Drucker-Prager's yield surface is the smooth cone
inscribing the Mohr-Coulomb segmented cone.

Note that minimumYieldStress is interpreted di�erently. If it is zero (the default), then the actual
minimum yield stress will be the e�ective cohesion. This is because there tends to be numerical problems
when using a very small minimum yield stress under tension.

When reducing the viscosity, if the second invariant of the strain rate tensor ε̇ is greater than maximumStrainRate
(ε̇max) and ε̇max 6= 0, then Drucker-Prager sets the new viscosity to

ηnew =
Ap+B√
ε̇max

.

Otherwise, Drucker-Prager sets the new viscosity such that the stress will equal the yield stress

ηnew =
Ap+B√

ε̇
.

After that, if ηnew is less than minimumViscosity, then ηnew is set to minimumViscosity. See Section 4.2.1
for more details on how to use maxStrainRate and minimumViscosity.

Also, the Drucker-Prager implementation allows you to specify that material near the boundary will
have di�erent yielding properties. This is useful for simulating frictional boundaries. For example, if
boundaryLeft is True, then in the element on the left boundary, Gale will use boundaryCohesion instead
of cohesion, boundaryFrictionCoefficient instead of frictionCoefficient, etc.

Finally, DruckerPrager requires a pressure.

Defaults

PressureField none

frictionCoe�cient 0
frictionCoe�cientAfterSoftening 0

minimumYieldStress 0 (see above)
minimumViscosity 0
maxStrainRate 0

boundaryCohesion 0
boundaryCohesionAfterSoftening 0

boundaryFrictionCoe�cient 0
boundaryFrictionCoe�cientAfterSoftening 0

boundaryLeft False
boundaryRight False
boundaryTop False

boundaryBottom False
boundaryFront False
boundaryBack False

See also Section A.4.3.2.

76 APPENDIX A. INPUT FILE FORMAT

A.4.3.4 FaultingMoresiMulhaus2006

This is a fairly complicated non-isotropic rheology. The full details can be found in Moresi and Mülhaus
(2006) [4], but essentially it keeps track of which direction a material is strained. To do so, it uses a
component called Director. This would usually be

�director�:

{

�Type�: �Director�,

�TimeIntegrator�: �timeIntegrator�,

�VelocityGradientsField�: �VelocityGradientsField�,

�MaterialPointsSwarm�: �materialSwarm�,

�initialDirectionX�: �0.0�,

�initialDirectionY�: �1.0�,

�initialDirectionZ�: �0.0�,

�dontUpdate�: �True�

}

Otherwise, it adds one variable not present in DruckerPrager: ignoreOldOrientation. This tells Gale
whether it should check to see whether material will weaken further in the current direction, or if it should
try every direction equally each time step.

Defaults

cohesion 0
cohesionAfterSoftening 0

frictionCoe�cient 0
frictionCoe�cientAfterSoftening 0

minimumYieldStress 0
ignoreOldOrientation False

A.5 Boundary Conditions

Gale's computational domain is logically Euclidean. So in 2D, there are four boundaries: right, left, top,
and bottom. 3D adds front and back. Note that the boundaries in the z axis are front and back, not top
and bottom. In many cases, this makes it simple to switch between 2D and 3D. When doing this, you may
ignore the warning that the z boundaries are empty in 2D.

A.5.1 Velocity Boundary Conditions

To impose boundary conditions on the velocity, add a composite variable condition (CompositeVC) to the
input �le. Within that CompositeVC, add a list of conditions by using WallVCs. Within each WallVC, specify
which boundary and what the velocity's value is. For example, to set the y velocity on the bottom to zero,
add

�velocityBCs�: {

�type�: �CompositeVC�,

�vcList�: [

{

�type�: �WallVC�,

�wall�: �bottom�,

�variables�: [

{

�name�: �vy�,

�value�: �0�

}

A.5. BOUNDARY CONDITIONS 77

]

}

]

}

If, instead, you set vy to a non-zero value, then the boundary will move as the simulation proceeds. If you
want the sides to remain �xed, then you probably want �ux boundaries, in which case you will also have to
specify a few more things (see Section A.5.2).

You can also set the velocity to a function. For example, to also set the x velocity to have a Gaussian

distribution exp
(
−
(
x−0.5
0.1

)2)
�velocityBCs�: {

�type�: �CompositeVC�,

�vcList�: [

{

�type�: �WallVC�,

�wall�: �bottom�,

�variables�: [

{

�name�: �vy�,

�value�: �0�

},

{

�name�: �vx�,

�value�: �exp(-((x-0.5)/0.1)^2)�

}

]

}

]

}

If you need to specify velocities for only part of the boundary (e.g., the left half moves at vx=1, the right
half is unconstrained), then you should use a MeshShapeVC (see Section A.7).

A.5.2 Flux Boundary Conditions

Let's assume you wish to have material �ow across the boundary instead of having the boundary move. A
simple example would be like Figure 5.13, where material �ows in from the left and out through the bottom.
There are two things that you must specify for this to work.

1. The boundaries do not move. For this model, you need to ensure that, while the material moves,
neither the bottom nor left boundaries move. Do this by specifying

�staticBottom�: �True�

�staticLeft�: �True�

in EulerDeform (see Section A.1.2).

2. Velocity conditions on the boundaries. Again, for slab subduction this involves in�ow conditions
on the left boundary and out�ow conditions on bottom. See Section A.5.1 for details. The other
boundaries have no-slip conditions.

78 APPENDIX A. INPUT FILE FORMAT

A.5.3 Stress Boundary Conditions

If the nature of your problem is that stresses are speci�ed on the boundary rather than velocities, you can
specify those conditions using the StressBC component. For example, if you want to simulate an extension
model with isostasy, this is equivalent to adding a supporting stress on the bottom. In equilibrium, the
supporting stress cancels the force of gravity, and material does not �ow across the boundary. When material
piles up, the supporting stress is too weak to support the material, and material �ows out. Similarly, when
material thins out, the supporting stress overcomes gravity and material �ows in.

StressBC is a component, so it must be inside the list of components (see Section A.1.1), not outside
the list like the velocity boundary conditions. For example, to incorporate an isostatic bottom boundary
condition, you would specify the normal stress on the bottom boundary as a linear function of the height.
So if gravity is 9.81, the density of the supporting material is 2.3, and the height of the material is 1.2, then
the StressBC should be

�stressBC�:

{

�Type�: �StressBC�,

�ForceVector�: �mom_force�,

�wall�: �bottom�,

�normal_value�: �9.81*2.3*(1.2-y)�

}

You can apply a shear stress to the boundary by specifying x_value, y_value, or z_value instead of or in
addition to normal_value.

A.5.4 Temperature Boundary Conditions

Setting the boundary conditions on the temperature works almost exactly the same as velocity boundary
conditions (see Section A.5.1). You need only change velocityBCs to temperatureBCs and the velocity
variable (e.g., vx) to temperature. For example, to set the bottom temperature to 1, you would add

�temperatureBCs�:

{

�type�: �CompositeVC�,

�vcList�: [

{

�type�: �WallVC�

�wall�: �bottom�,

�variables�: [

{

�name�: �temperature�,

�value�: �1.0�

}

]

}

]

}

A.5.5 Deformed Upper and Lower Boundaries

Normally, Gale starts the simulation in a rectangular box. As the simulation proceeds, the boundaries can
become distorted, in particular the upper boundary. However, you can also con�gure Gale to start with an
initially deformed upper or lower boundary by adding a SurfaceAdaptor component. A simple example is
to make the top a sinusoid

A.5. BOUNDARY CONDITIONS 79

�surfaceAdaptor�:

{

�Type�: �SurfaceAdaptor�,

�mesh�: �v-mesh�,

�sourceGenerator�: �v-mesh-generator�,

�topEquation�: �0.1*sin(2*pi*x)�

}

This sets the height of the surface to

h = h0 + 0.1 · sin(2πx),

where h0 is the original height.
Note that many of the variables are prefaced with �top�. You can also use �bottom� there, and thus

modify the height of the bottom boundary. So if you modi�ed the example above to

�surfaceAdaptor�: {

�Type�: �SurfaceAdaptor�,

�mesh�: �v-mesh�,

�sourceGenerator�: �v-mesh-generator�,

�topEquation�: �0.1*sin(2*pi*x)�,

�bottomEquation�: �0.1*sin(2*pi*x)�

}

then the top and bottom will follow similar curves.
You can also read in topographic data from a �le by setting the SurfaceType to topo_data.

"surfaceAdaptor":

{

"Type": "SurfaceAdaptor",

"mesh":"v-mesh",

"sourceGenerator": "v-mesh-generator",

"topSurfaceType": "topo_data",

"topSurfaceName": "input/cookbook/test.topo",

"topNx": "32",

"topNz": "12",

"topMinX": "minX",

"topMaxX": "maxX",

"topMinZ": "minZ",

"topMaxZ": "maxZ"

}

This will read in an ascii �le with the name from SurfaceName (�ascii_topo� by default). The �le has a grid
with Nx*Nz points covering the area from (MinX,MinY) to (MaxX,MaxY). Gale then interpolates the heights
from that grid to its own grid.

A.5.6 Erosion

Gale has two di�erent models for modeling erosion. After Gale computes a solution to the Stokes �ow, both
of these work by modifying the velocity of the top nodes of the mesh. So it does not keep track of where
material comes from and where it goes.

A.5.6.1 Di�usion

This plugin applies a di�usive operator to the top. Speci�cally,

80 APPENDIX A. INPUT FILE FORMAT

∂y

∂t
= −diffusionCoefficient∂

2y

∂x2
.

You enable di�usion by adding the plugin SurfaceProcess. For example to apply di�usion with a coe�cient
of 1, add

"plugins": [

{

"Type": "Underworld_SurfaceProcess"

}

],

"SurfaceProcess":

{

"mesh": "v-mesh",

"VelocityField": "VelocityField",

"diffusionCoefficient": "0.1"

},

just before the EulerDeform struct.

A.5.6.2 HRS Erosion

This plugin applies the erosion law as described in Hilley and Strecker [20]. In particular, it forces the slope
to be

α = aold + tan−1
(
2vTW−2 − (2Kkma)Whm−1Sn

(hm+ 1) dterosion

)
,

where

S ≡ tan−1 (aold) ,

a ≡ (ymax − y0) /W,

W , ymax and y0 are determined by the geometry as in Figure A.2, and vT , K, ka, h, m, n, and dterosion are
speci�ed by the input �le. Erosion is only applied at intervals of dterosion and does not start eroding until
after first_t_erosion.

α
y
0

max
y

W

Figure A.2: Geometry for HRS Erosion

Defaults

vT -
K -
ka -
h -
m -

dt_erosion -
�rst_t_erosion -

A.6. SOLVER PARAMETERS 81

A.6 Solver Parameters

There are a number of parameters that control solver behavior. Pseudo-code for how it works is

for (i=0; i<=nonLinearMaxIterations; ++i)

{

for(j=0; j<=maxIterations; ++j)

{

Apply one linear iteration;

if(monitor)

print out residual and cpu time;

if(j>=minIterations)

{

if((useAbsoluteTolerance

&& absolute_residual<tolerance)

|| (!useAbsoluteTolerance

&& relative_residual<tolerance))

break;

}

}

compute non-linear_residual;

if(i>=nonLinearMinIterations

&& non-linear_residual<nonLinearTolerance)

break;

if(i==nonLinearMaxIterations && killNonConvergent)

abort();

}

The linear iteration step is described more fully in Section 2.2.8.4. The parameters for the linear solve are
set in the Stokes_SLE_UzawaSolver component

Defaults

tolerance 10−5

maxIterations 1000
minIterations 1

useAbsoluteTolerance False
monitor False

Note that in all of the example input �les, tolerance is set equal to the global parameter linearTolerance.
The parameters for the non-linear solve are set in the Stokes_SLE component

Defaults

nonLinearTolerance 10−2

nonLinearMaxIterations 500
nonLinearMinIterations 1

killNonConvergent True

A.7 Fixing Internal Degrees of Freedom

While the velocity and temperature boundary conditions (see Sections A.5.1 and A.5.4) can be used to
specify values on the boundary, it is sometime necessary to specify values within the domain as well. For
example, the region that you want to simulate may not map nicely to a rectangular domain. You can �x
the internal degrees of freedom for the areas outside of your irregular domain with a MeshShapeVC. It works
very similar to WallVC, except that you supply a shape rather than a wall for the condition to work on. For
example, adding

82 APPENDIX A. INPUT FILE FORMAT

{

�type�: �MeshShapeVC�

�Shape�: �fixedShape�

�variables�: [

{

�name�: �vy�

�value�: �0�

}

]

}

to the list of WallVCs in the CompositeVC will �x the y velocity in the fixedShape region. Note that you
can also employ this as a boundary condition by making fixedShape only cover a wall. The main advantage
of this approach over a WallVC is that you can have it only cover a part of the wall, thus constraining only
part of the boundary. So if you wanted half of the boundary to move at a certain velocity, but wanted the
other half unconstrained, you would use a MeshShapeVC.

There is one important drawback to using a MeshShapeVC. MeshShapeVC constrains mesh points de�ned
by a shape initially. However, if the mesh deforms, then MeshShapeVC will still constrain the same points
on the grid. These points will be at a di�erent location in space, so the constraint is now operating on a
di�erent area. The only way to really prevent the mesh from deforming is to use static sides (see Section
A.1.2) everywhere.

A.8 Initial Conditions

For temperature dependent problems, you need to set initial conditions for the temperature. Also, for pure
thermal problems, the velocity is not solved for, so it must be set at the beginning. Setting initial conditions
is similar to setting boundary conditions. In general, the only di�erence is changing the condition type from
WallVC to AllNodesVC. As an example, to set the initial temperature everywhere to 1, you would add

�temperatureICs�: {

�type�: �CompositeVC�

�vcList�: [

{

�type�: �AllNodesVC�,

�wall�: �bottom�,

�variables�: [

{

�name�: �temperature�,

�value�: �1.0�

}

]

}

]

}

A.9 Buoyancy Forces

Gales supports two types of buoyancy forces. The �rst one, BuoyancyForceTerm, is more general, allowing
you to specify buoyancy properties for each material.

A.9.1 BouyancyForceTerm

If you add this component, then there will be a force on each particle of

A.10. DIVERGENCE FORCES 83

F = −ρg.

If you specify a TemperatureField, then the force becomes

F = −ρg (1− αT) .

The density (ρ) and coe�cient of thermal expansivity (α) are taken from the material properties (see Section
A.4). The vector gravityDirection determines the direction of the force. In the sample input �les,
ForceVector is always mom_force, and Swarm is always picIntegrationPoints.

damping is whether to enable a damping term to �x a sloshing, �drunken seaman� instability often seen
in models with a free surface. Adding the damping term with an adaptive step size makes the problem
non-linear. If you have problems with convergence, try setting dtFactor to something less than 1 (e.g. 0.5),
or use a �xed step size by setting dt (see Section A.1.4).

Defaults

gravity 0
gravityDirection (0,-1,0)
TemperatureField none

ForceVector none
Swarm none
damping True

A.9.2 BuoyancyForceTermThermoChem

If you add this component, then there will be a vertical force on each particle of

F = −ρRaC .

If you specify a TemperatureField, then the force becomes

F = RaTT − ρRaC .

The thermal (RaT) and chemical (RaC) Rayleigh numbers are the same for all materials. In contrast to
BuoyanceForceTerm, the force is always in the vertical (y) direction. In the sample input �les, ForceVector
is always mom_force, and Swarm is always picIntegrationPoints.

Defaults

RaC 0
RaT 0

TemperatureField none
ForceVector none
Swarm none

A.10 Divergence Forces

As mentioned in Section 2.2.5, it is possible to add a divergence force to the continuity equation so that
material is created anew. The �rst parameter will always be the same between input �les.

ForceVector cont_force

The last three parameters specify the divergence.

DomainShape The divergence is only non-zero inside of this shape.

force_type This can be any one of �equation� (the default), �double�, or �func� (mostly used for input from
a �le).

force_value If �force_type� is �double,� then this must be a number. If �force_type� is �func,� then it
must be the textual name of one of the Standard Condition Functions (e.g., File1).

84 APPENDIX A. INPUT FILE FORMAT

A.11 Equation Input

Gale includes the equation parser muParserX (http://code.google.com/p/muparserx/). This allows you
to enter initial conditions, boundary conditions, and shapes using natural mathematical notation. The
syntax is meant to be as close as possible to natural notation as possible. For example,

exp(-2*(x^2 + y^2))

is equivalent to the formula

e−2(x
2+y2).

Within each equation, the coordinates are the only prede�ned variables: x, y, z, t. For your convenience,
you can also de�ne variables within an equation. The equation

r=hypot(x^2+y^2), r*exp(-(r/10)^2)

de�nes a radius and then uses it. Statements are separated by commas �,�, and the return value of the
equation is the last statement.

The available unary and binary operators are
+ addition
- subtraction or unary minus
* multiplication
/ division
^ raise to the power:xy

In addition, the available functions are

http://code.google.com/p/muparserx/

A.11. EQUATION INPUT 85

sin(x) sin
cos(x) cos
tan(x) tan
asin(x) arcsin
acos(x) arccos
atan(x) arctan
sinh(x) hyperbolic sin
cosh(x) hyperbolic cos
tanh(x) hyperbolic tan
asinh(x) hyperbolic arcsin
acosh(x) hyperbolic arccos
atanh(x) hyperbolic arctan
sqrt(x) Square root:

√
x

cbrt(x) cube root: 3
√
x

sqrt1pm1(x)
√
1 + x− 1, optimised for when x is small

hypot(x,y)
√
x2 + y2

erf(x) error function
erfc(x) complementary error function
log(x) natural logarithm:log (x)
log1p(x) log (1 + x), optimised for when x is small
log10(x) log10 (x)
log2(x) log2 (x)
exp(x) ex

expm1(x) ex − 1, optimised for when x is small
abs(x) Absolute value: |x|
step(x) 0 if x<0, 1 otherwise
�oor(x) largest integer not greater than x
ceil(x) smallest integer not less than x

sum(x1,x2,x3,...) Sum of individual values: x1+x2+x3+...
min(x1,x2,x3,...) Minimum of all values
max(x1,x2,x3,...) Maximum of all values

In addition, you can use the syntax a ? b : c as a conditonal. If the �rst element a is true, then
return b. Otherwise return c. For the condition a, you can use all of the normal relational operators. To be
speci�c, the allowed relational operators are

< less than
<= less than or equal
> greater than
>= greater than or equal
== is equal
!= is not equal
or logical or
and logical and
xor exclusive or

Note that this will only evaluate the element as needed. So if x<1, a will be evaluated, but not b. This
can come in handy if a or b are di�cult to compute or not valid for certain ranges.

If you are unsure whether the equations you entered are producing the desired numbers, you can turn on
the verbose option (Section A.14). This will output the equation that is being evaluated, the coordinates,
and the result.

86 APPENDIX A. INPUT FILE FORMAT

A.12 File Input Data

The other way to set initial and boundary conditions is by reading it in from a �le. You can use up to 10
di�erent �les as input data (File1, File2, ... File10). For each File, there are a number of associated
parameters. As a concrete example, File1 will have data along the axis File1_dim and, if de�ned, the axes
File1_dim2 and File1_dim3. Depending on how many dimensions are de�ned, File1 will be an array of
File1_N, File1_N*File1_N2, or File1_N*File1_N2*File1_N3 elements. Gale reads these elements from a
�le. The format of the �le is one column for each of the coordinates (1, 2, or 3), and one column for the value.
The coordinates must be sorted and increasing. Gale linearly interpolates between values as necessary. So a
�le with the two lines

0 10

100 20

will create a linear gradient between 0 and 100, starting with 10 at 0 and ending with 20 at 100. For points
less than 0, Gale uses the value of the lowest point (10). For points greater than 100, Gale uses the value of
the highest point (20).

For 2D and 3D input �les, the coordinate mesh de�ned by the input �le must be a rectangular grid.

A.13 Tracers

You can add tracer particles to the simulation to help you track where material is �owing. The existing
material particles are not suitable for that because they may get duplicated or removed as the simulation
proceeds. This is necessary to keep the number of particles down to a reasonable level. Tracers, on the other
hand, are merely silent observers, playing no role in the evolution of the system.

To add tracers to your simulation, �rst enable tracers by adding the variable

�enable-tracers�: true,

Note that there are no quotes around true. Next set up the initial position of the tracers. To put the tracers
exactly where you want them, use a ManualParticleLayout component. An example of one that puts down
8 tracers is

�pLayout�: {

�Type�: �ManualParticleLayout�,

�totalInitialParticles�: �1�,

�manualParticlePositions�: [

�asciidata�,

[�x�, �y�, �z�],

1.0, .1, .1,

1.3, .1, .1,

1.6, .1, .1,

1.9, .1, .1,

1.0, .2, .1,

1.3, .2, .1,

1.6, .2, .1,

1.9, .2, .1

]

}

Finally, add a TracerOutput component to output values of various �elds (e.g. pressure, temperature) as
the simulation progresses.

�swarmOutput�:

{

A.14. VERBOSITY OPTIONS 87

�Type�: �TracerOutput�,

�Swarm�: �passiveTracerSwarm�,

�Fields�: [

�PressureField�,

�StrainRateInvariantField�

]

}

This component will create eight plain text �les in the output directory, swarmOutput.00000.dat, swarmOutput.00001.dat,
... swarmOutput.00007.dat. Each �le will contain the positions of the particle through time and the values
of the pressure and strain rate invariant at those positions.

A.14 Verbosity Options

By default, Gale prints out very little when running. To get more information, insert

�journal.info�: �True�,

�journal.debug�: �True�,

�journal-level.info�: �2�,

�journal-level.debug�: �2�

into the variables section (see Section A.1.4). This will print out more information than you need about the
equations, components, solvers, and number of iterations. In addition, you can get even more information
about the solvers from PETSc by appending �-ksp_monitor� to the command line.

88 APPENDIX A. INPUT FILE FORMAT

Appendix B

Benchmarks

Gale has been tested against a number of di�erent benchmarks. Each benchmark tests di�erent parts of the
code, although there is some overlap. Speci�cally, Table B.1 summarizes which parts of the code are tested
by which benchmark.

Code Functionality Benchmark Section

Stokes solver and interpolate between particles and mesh in 2D B.2, B.3
Stokes solver and interpolate between particles and mesh in 3D B.1, B.3

Time stepping B.2
Gravity B.1, B.2

Free surface B.2
Thermal Advection & Di�usion B.4, B.5, B.6

Table B.1: Summary of which parts of the code are tested by which benchmarks

Many of these benchmarks can be carried out to high precision (~1%). In particular, the error should
follow the relation

error ∝ h+O(h2),

where h is the size of the element. This means that if we plot the error from three di�erent resolutions
(high, medium and low) and scale it by h, we should see that the high-resolution error is closer to the
medium-resolution error than the low-resolution error. In practice, this may be di�cult to achieve because
there are almost always other sources of error besides resolution.

Altogether, these benchmarks give us a high degree of con�dence in the code.

89

90 APPENDIX B. BENCHMARKS

B.1 Falling Sphere

This benchmark simulates a rigid sphere falling through a cylinder �lled with a viscous medium as in Figure
B.1.

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

Figure B.1: Schematic of a Sphere falling through a Cylinder

In an in�nitely large cylinder, the analytic solution for the drag on a sphere is

F = 6πηru,

where η is the viscosity of the medium, r is the radius of the sphere, and u is the velocity of the sphere.
Conversely, the buoyancy force is

F =
4

3
πr3gδρ,

where g is the gravitational constant and δρ is the density di�erence between the sphere and the medium.
Balancing these two forces and solving for the velocity gives

u =
2

9
r2gδρ/η.

Setting g = 1, r = 1, δρ = 1, and η = 1 gives a velocity of

u = 0.222.

In our case, we simulate a rigid sphere with a high viscosity sphere. This allows some internal circulation
within the sphere, and so the expression for the velocity becomes [9]

u =
1

3

r2gδρ

η

η + η′

η + 3
2η
′ ,

where η′ is the viscosity of the sphere. For our case, the background medium's viscosity is 1 and the sphere's
viscosity is 100, so the correction is about 1%.

When the boundaries are not in�nitely far away, we can expand the solution in terms of the ratio of the
radius of the sphere (r) to the radius of the cylinder (R). One solution by Habermann [12] gives a drag force
of

FH = 6πηru
1− 0.75857 ·

(
r
R

)5
1 + fH

(
r
R

) ,

B.1. FALLING SPHERE 91

where

fH

(r
R

)
= −2.1050(r/R) + 2.0865(r/R)3 − 1.7068(r/R)5 + 0.72603(r/R)6.

For our case with r = 1, R = 4, this gives a velocity of

u = 0.1122747319.

The walls reduce the speed by about a factor of two.
Another solution by Faxen [12] gives a drag force of

FF = 6πηru/ (1 + fF (r/R)) ,

where

ff (r/R) = −2.10444(r/R) + 2.08877(r/R)3 − 0.94813(r/R)5

−1.372(r/R)6 + 3.87(r/R)8 − 4.19(r/R)10.

For our case, this gives a speed of

u = 0.112293603939,

which agrees closely with the result from Habermann.
Figure B.2 shows the velocity solution for the resolution 32×64×32. Because of the symmetries of the

problem we only have to simulate a quarter of the domain. Since the sphere is not completely rigid, the
velocity inside the sphere is not uniform. In particular, the velocity is largest in the center of the sphere and
decreases outward.

We plot the error in the computed velocity compared to the Faxen solution in Figure B.3. The error bars
correspond to the range of velocities for r < 0.7. As the element size h decreases, the error decreases.

92 APPENDIX B. BENCHMARKS

Figure B.2: Velocity in the sphere and surrounding medium

B.2. RELAXATION OF TOPOGRAPHY 93

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 0.1 0.2 0.3 0.4 0.5 0.6

V
e

lo
c
it
y
 E

rr
o

r

h

Figure B.3: Error in computed velocity vs. resolution

B.2 Relaxation of Topography

Given an in�nitely deep purely viscous medium with an in�nitesimal initial sinusoidal height pro�le, the
topography will decay exponentially with the timescale [10]

tr =
4πη

ρgL
,

where η is the viscosity, ρ is the density, g is the gravitational constant, and L is the wavelength of the initial
sinusoid.

In our case, we simulate a medium with non-in�nite depth (depth=L) and a sinusoid with a non-zero
amplitude (A = 0.01). The internal �elds decay exponentially with depth with a length scale of L/2π, giving

an error of 0.2%. A non-zero amplitude creates errors of order (2πA/L)
2
, which in this case is 0.4%.

Figure B.4 shows the results of a high-resolution (256×512) run. Note that we use symmetry to only
simulate half of the wavelength.

94 APPENDIX B. BENCHMARKS

Figure B.4: Strain rate and velocities for a sinusoidal topography relaxing under gravity

Running the code with multiple resolutions and measuring the error in the height in the peak gives Figure
B.5. The error behaves a bit erratically because of the damping term applied to the free surface (Section
A.9.1). Even so, the error decreases linearly with increasing resolution, giving us con�dence in our ability to
accurately track topography.

B.3. DIVERGENCE 95

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 10 20 30 40 50 60 70 80 90 100

E
rr

o
r

Time

64x128

128x256

256x512

Figure B.5: Error in the height at the peak

B.3 Divergence

This benchmark tests the implementation of the divergence term in equation 2.8. In 2D, a constant divergence
is applied to a square domain, and the velocity on the corners is set to enforce a spreading from the center
of the square. For a constant divergence d, the analytic solution for this setup is

vx = x · d/2
vy = y · d/2 .

In 3D, the analytic solution is

vx = x · d/3
vy = y · d/3
vz = z · d/3

.

In both cases, the strain rate invariant equals
√
d/2. The error is completely determined by the solver. In

both 2D and 3D, decreasing linearTolerance to 10−9 results in a solution with zero error.

96 APPENDIX B. BENCHMARKS

B.4 Thermal Di�usion

This is a pure thermal benchmark. The Stokes equations are not solved. Rather, the benchmark simulates a
box relaxing from an initial sinusoidal temperature distribution. We set the velocity to zero and the initial
temperature to

Tt=0 = cos (πx) sin (2πy) .

The temperature on the bottom and top are �xed to zero. The temperature on the left and right side are
left free, implying the boundary conditions

∂T

∂x

∣∣∣∣
x=0,1

= 0.

The complete solution decays with time

T = exp
(
−κ
(
5π2
)
t
)
cos (πx) sin (2πy) ,

where κ = 1.7 is the di�usion coe�cient. Figures B.6 and B.7 show the results at t = 0 and t = 0.0011489
for a run with 16×16 elements. Figure B.8 plots the error in the maximum temperature at t = 0.0011489 as
a function of the grid spacing h. The error decreases linearly as the spacing decreases.

Figure B.6: Temperature at the beginning of the thermal di�usion benchmark. The mesh is 16×16 elements.

B.4. THERMAL DIFFUSION 97

Figure B.7: Temperature at the end of the thermal di�usion benchmark. The mesh is 16×16 elements.

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

E
rr

o
r

h

Figure B.8: Error in the maximum temperature at t = 0.0011489 as a function of resolution.

98 APPENDIX B. BENCHMARKS

B.5 Lagrangian Thermal Advection

This is another pure thermal benchmark. In this case, the velocity is speci�ed and the di�usivity is set to
zero. The temperature is initially set to be 2 inside a box and 1 outside. We set the velocity to

vx = 0.3x− 0.2
vy = (x+ 0.3)(1.5− x)y + (x− 0.15)(0.7− x) .

This velocity has been constructed such that the natural advection of the mesh will not be disturbed by
the remesher. This means that the temperature �eld should not advect relative to the mesh. Figures B.9
and B.10 show the initial and �nal temperatures. The initial temperature distribution is kept sharp and
intact.

Figure B.9: Initial temperature and velocity of the lagrangian thermal advection benchmark.

B.5. LAGRANGIAN THERMAL ADVECTION 99

Figure B.10: Final temperature and velocity of the lagrangian thermal advection benchmark.

100 APPENDIX B. BENCHMARKS

B.6 Eulerian Thermal Advection

This is another pure thermal benchmark. In contrast to the previous benchmark, the mesh is �xed and
the temperature is advected across the grid. The velocity is set to vx = 1, vy = 1. Figure B.11 shows
the initially sharp temperature distribution. Figures B.12, B.13, and B.14 show the result at t = 0.25 for
runs with 16×16, 32×32, and 64×64 elements. While there is signi�cant di�usion, it does improve with
resolution.

Figure B.11: Initial temperature of the eulerian thermal advection benchmark.

Figure B.12: Temperature at t = 0.25 for a run with 16×16 elements.

B.6. EULERIAN THERMAL ADVECTION 101

Figure B.13: Temperature at t = 0.25 for a run with 32×32 elements.

Figure B.14: Temperature at t = 0.25 for a run with 64×64 elements.

102 APPENDIX B. BENCHMARKS

Appendix C

License

GNU GENERAL PUBLIC LICENSE Version 2, June 1991. Copyright (C) 1989, 1991 Free
Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software �
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps:

1. Copyright the software, and

2. O�er you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modi�ed by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will
not re�ect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in e�ect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

103

104 APPENDIX C. LICENSE

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS
FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The �Program� be-
low refers to any such program or work, and a �work based on the Program� means either the Program
or any derivative work under copyright law: that is to say, a work containing the Program or a portion
of it, either verbatim or with modi�cations and/or translated into another language. (Hereinafter,
translation is included without limitation in the term �modi�cation.�) Each licensee is addressed as
�you.�

Activities other than copying, distribution and modi�cation are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option o�er
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modi�cations or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

(a) You must cause the modi�ed �les to carry prominent notices stating that you changed the �les
and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(c) If the modi�ed program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

105

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(b) Accompany it with a written o�er, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the o�er to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an o�er, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making modi�cations to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface de�nition �les, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from a designated place,
then o�ering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automati-
cally receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients' exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

106 APPENDIX C. LICENSE

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may di�er in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a version number of
this License which applies to it and �any later version,� you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are di�erent, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NOWARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM �AS IS� WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

107

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
�le to most e�ectively convey the exclusion of warranty; and each �le should have at least the �copyright�
line and a pointer to where the full notice is found. For example:

One line to give the program's name and a brief idea of what it does. Copyright © (year) (name
of author)

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright © year name of author Gnomovision comes with ABSO-
LUTELY NOWARRANTY; for details type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than `show w' and `show c'; they
could even be mouse-clicks or menu items � whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
�copyright disclaimer� for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which
makes passes at compilers) written by James Hacker.

(signature of Ty Coon)
1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

108 APPENDIX C. LICENSE

Bibliography

[1] Fullsack, Phillipe (1995). An arbitrary Lagrangian-Eulerian formulation for creeping �ows
and its application in tectonic models, Geophys. J. Int., 120, 1-23.

[2] Quenette, S., B. Appelbe, M. Gurnis, L. Hodkinson, L. Moresi, and P. Sunter (2005), An
Investigation into Design for Performance and Code Maintainability in High Performance
Computing, ANZIAM J., 46 (e), C1001-C1016.

[3] Moresi, L.N., F. Dufour, and H.-B. Mühlhaus (2003), A Lagrangian integration point �nite
element method for large deformation modeling of viscoelastic geomaterials, J. Comp. Phys.,

184 , 476-497.

[4] Moresi, L.N., and H.-B. Mühlhaus (2006), Anisotropic viscous models of large-deformation
Mohr-Coulomb failure, Philosophical Magazine, 86 (21), 3287-3305.

[5] Moresi, L.N., and V.S. Solomatov (1995), Numerical investigation of 2D convection with
extremely large viscosity variations, Phys. Fluids, 7 (9), 2154-2162.

[6] O'Neill, C., L. Moresi, D. Müller, R. Albert, and F. Dufour (2006), Ellipsis 3D: a particle-in-
cell �nite element hybrid code for modelling mantle convection and lithospheric deformation,
Comput. Geosci. 32 (10), 1769-1779.

[7] Zhong, S., M.T. Zuber, L.N. Moresi, and M. Gurnis (2000), The role of temperature-
dependent viscosity and surface plates in spherical shell models of mantle convection, J.
Geophys. Res., 105, 11,063-11,082.

[8] Schmid, D.W., and Y.Y. Podladchikov (2003), Analytical solutions for deformable elliptical
inclusions in general shear, Geophys. J. Int., 155, 269-288.

[9] Landau, L.D., and E.M. Lifshitz (1987), Fluid Mechanics, Pergamon Press, 61-62.

[10] Johnson, A.M., and R.C. Fletcher (1994), Folding of Viscous Layers, Columbia University
Press, 19.

[11] Buiter, S.J.H., and A.Y. Babeyko, S. Ellis, T.V. Gerya, B.J.P. Kaus, A. Kellner, G. Schreurs,
and Y. Yamada (2006), The numerical sandbox: comparison of model results for a shortening
and an extension experiment, Analogue and Numerical Modelling of Crustal-Scale Processes,
253, edited by S.J.H. Buiter and G. Schreurs, pp. 29-64, Geological Society, London, Special
Publications, doi: 10.1144/GSL.SP.2006.253.01.02.

[12] Lindgren, E.R. (1999), The Motion of a Sphere in an Incompressible Viscous Fluid at Reynolds
Numbers Considerably Less Than One, Physica Scriptae, 60, 97-110.

[13] Deubelbeiss, Y., and B.J.P. Kaus (2007), A comparison of �nite di�erence formultions for the
Stokes equations in presence of strongly varying viscosity, poster presented at 2007 AGU.

[14] Dohrmann, C., and P. Bochev (2004), A stabilized �nite element method for the Stokes
problem based on polynomial pressure projections, Int. J. Num. Meth. Fluids., 46, 183-201

109

110 BIBLIOGRAPHY

[15] Elman, H.C., D.J. Silvester, and A.J. Wathen (2005), Finite Elements and Fast Iterative

Solvers: with Applications in Incompressible Fluid Dynamics, Oxford University Press

[16] Buiter, S., and G. Schreurs, http://www.geodynamics.no/benchmarks/benchmark-
annum2008.html

[17] Dahlen, F.A. (1984), Noncohesive Critical Wedges: An Exact Solution, J. Geophys. Res., 89,
B12, 10125-10133

[18] Kaus, B.J.P. (2009), Factors that control the angle of shear bands in geodynamic numerical
models of brittle deformation, Tectonophysics, 484, 36-47

[19] Buck, W.R., L.L. Lavier, and A.N.B. Poliakov (2005), Modes of faulting at mid-ocean ridges,
Nature, 434, 719-723

[20] Hilley, G.E. and M.R. Strecker (2004), Growth and erosion of fold-and-thrust belts with an
application to the Aconcagua fold-and-thrust belt, Argentina, J. Geophys. Res., 109, B01410,
doi:10.1029/2002JB002282

	Preface
	Who Will Use Gale?
	Citation
	Support
	Gale History

	Introduction
	About Gale
	Gale Computational Approach and Governing Equations
	Infrastructure
	Units
	Basic Equations
	Gravity
	Divergence Forces
	Rheology
	Temperature
	Numerical Solution
	Finite Elements
	Thermal Advection and Diffusion
	Scaling
	Uzawa Algorithm

	Installation and Getting Help
	Introduction
	Binaries
	Building from Source
	System Requirements
	Downloading the Code
	Source Code Repository (Experts Only)

	Support

	Running Gale
	Basic Usage
	Advanced Usage
	Drucker-Prager Rheology
	Direct Solvers
	Command-Line Parameters
	Checkpointing
	Debugging Input Files

	Output and Visualization
	Basic Visualization with Visit

	Gauging Accuracy

	Cookbooks
	Introduction
	Adding Lines to the Template File
	Adding Variables to the Template File

	Viscous Material
	Viscous Material in Simple Extension
	Viscous Material with Complex Boundaries
	Viscous Material with Boundary Conditions Read From a File
	Viscous Material with Inflow/Outflow Boundaries
	Viscous Material in Extension with Normal Stress Boundaries
	Viscous Material with Deformable Bottom Boundary
	Viscous Material with Initially Deformed Upper Boundary
	Viscous Material with Fixed, Deformed Bottom Boundary
	Extension in 3D with topography
	Tracers
	Multiple Viscous Materials
	Yielding Material in Simple Extension
	Thermal Convection
	Thermal Convection with Initial Conditions from a File
	Pure Thermal
	Power Law Creep

	Input File Format
	Structure
	Components
	EulerDeform
	Initial and Boundary Conditions
	Variables

	Temperature components
	Shapes
	EquationShape
	Box
	PolygonShape

	Materials
	StoreVisc and StoreStress
	Viscous
	MaterialViscosity
	Frank-Kamenetskii
	Arrhenius
	NonNewtonian

	Yielding
	StrainWeakening
	VonMises
	DruckerPrager
	FaultingMoresiMulhaus2006

	Boundary Conditions
	Velocity Boundary Conditions
	Flux Boundary Conditions
	Stress Boundary Conditions
	Temperature Boundary Conditions
	Deformed Upper and Lower Boundaries
	Erosion
	Diffusion
	HRS Erosion

	Solver Parameters
	Fixing Internal Degrees of Freedom
	Initial Conditions
	Buoyancy Forces
	BouyancyForceTerm
	BuoyancyForceTermThermoChem

	Divergence Forces
	Equation Input
	File Input Data
	Tracers
	Verbosity Options

	Benchmarks
	Falling Sphere
	Relaxation of Topography
	Divergence
	Thermal Diffusion
	Lagrangian Thermal Advection
	Eulerian Thermal Advection

	License

