COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS (CIG)
VICTORIA PARTNERSHIP FOR ADVANCED COMPUTING (VPAC)
MONASH UNIVERSITY

Gale

User Manual
Version 1.6.1

5x10°

U, imposed
y=0 3

5x10
strain rate

25
< (Myr)
g

Walter Landry
Luke Hodkinson

www.geodynamics.org Susan Kientz

Gale

(©) California Institute of Technology
Walter Landry and Luke Hodkinson
Version 1.6.1

November 10, 2010

About the cover: A 3D simulation of a mid-ocean ridge courtesy of Garrett Ito.

Contents

2.2.3 Basic Equations|
..
12.2.5 Divergence Forces| e
12.2.6 Rheology|

[2.2.7 Temperature|

2.2.8.1 Artificial Compressibility] oo oo
2.2.8.2 Scaling]
2.2.8.3 Hydrostatic Pressure| 0oL
2.2.8.4 Uzawa Algorithm| L o

[3 Installation and Getting Help|

8.3 Building from Source|.
3.3.1 System Requirements|
13.3.2 Dependencies| e
13.3.3 Downloading the Code|.

[3.3.3.1 Source Code Repository (Experts Only)|.

4 193191 2 1] P

[4 Running Gale|

4.1 Basic Usage| o e
4.2 Advanced Usage| e
4.2.1 Drucker-Prager Rheology|
422 Direct Solvers|.
4.2.3 Multigrid| L e e

4.2.5 Checkpointing| e
4.2.6 Debugging Input Files|o
4.3 Output and Visualization|

4 CONTENTS
4.3.2 Visualizing Movies with Paraview|. L o L 42
4.3.3 Generating CSV files|. 43

4.4 Gauging ACCUTACY| . « « v« v v v v v i i e e e e e e e e e e 43
6_Cookbooks 45
b1 Introductionl. e 45
p.1.1 Adding Lines to the Template File| o 0o 0oL 45
p.1.2 Adding Variables to the Template File|o o000 45

B2 Viscous Materiall oL 45
p.3 Viscous Material in Simple Extension| o oo oo 47
.4 Viscous Material with Complex Boundaries| 47
5.5 Viscous Material with Boundary Conditions Read From a File| 49
|5;6 Viscous Material with Inflow/Outflow Boundaries|. 49
5.7 Viscous Maferial in Extension with Normal Stress Boundarted o1
5.8 Viscous Material with Deformable Bottom Boundaryf. 53
9.9 Viscous Material with Initially Deformed Upper Boundary|. 54
.10 Viscous Material with Fixed, Detormed Bottom Boundary|. 55
[5.11 Hydrostatic Term|. 58
5.12 Multiple Viscous Materials| 58
.13 Yielding Material in Simple Extension| oo 60
5.14 Thermal Convectionl e e e e 62
b.15 Power Law Creep|. o e 66
[6 Geologic Example] 67
|7 Modifying Gale| 71
[r.1 Introductionl. o L L e 71
7.2 Software Components of Galel 71
[f21 StGermain| e 71
[C2Z27PETSA. - - o o oot e 71
T3 SFEM] . o o oo oo e 72
[r24 PiCellerator| o e 73
[c25 UnderWorld| o 0 oo o o 73

[7.3 System Description| 73
7.4 Sample Rheologies|. 73
[7.4.1 Simple Viscous |. o 73

[r.5 Standard Condition Functions|. oL oL 74
[A Input File Format) s
AT SEucturd . . . o o oo 7
IA.L.1 Components| e 7

A Plugins| e 78
[A121 FulerDeformlo 78

IA.1.3 Initial and Boundary Conditions| 0oL 80
IA.14 Variables o 80

IA.2 Basic Components| e e 81
|A.3 Temperature components| L 88
A .4 DES| . . e e e e e 90
A4l BelowCosmmePlane| 91
1A42 BelowPlanel 0 91
A3 BOX - o 92
Ad4 ConvexHulll o e 92
.. 92

A 4.6 Everywhere| 93

AA7 DPOIVEomSHADT . - o v o o oo e e e e 93

CONTENTS
A.4 phere] e
IA.4.9 Superellipsoid|o
A5 Materials L
1A.5.1 StoreVisc and Storestressl Lo L e
AE2VISCOUS -+« o o o o v e e e
[A.5.2.1 MaterialViscosity]o
1ALD.2.2 Frank-Kamenetskul.o
[AL5.2.3 Arrheniusl. L
1A.5.2.4 NonNewtonianl . . « « v« v v v v v v v et e e e e e
A5 Yielding o e
IA.5.3.1 StrainWeakening|o o
IAD.3.2 VonMises L
1A.5.3.3 DruckerPrager|
1A.5.3.4 FaultingMoresiMulhaus2006|o 0oL,
IA.6 Boundary Conditions|. e
IA.6.1 Velocity Boundary Conditions|. o
1A.6.2 Flux Boundary Conditions|
IA.6.3 Stress Boundary Conditions|o L
|A.6.4 Temperature Boundary Conditions| 0oL
1A.6.5 Detormed Upper and Lower Boundaries|
[A6.6 _Erosionl . - - « o v v vt e
[A661 Diffusionl
1A.6.6.2 HRS Frosionl oL
IA.7 Solver Parametersl
IA.8 Fixing Internal Degrees of Freedom|. Lo
IA.9 Temperature Initial Conditions|
IA.10 HydrostaticTerm| oL o e
IA.11 Buoyancy Forces| e
|A.11.1 BouyancyForcelerm| oo
IA.11.2 BuoyancyForcelTermThermoChem|
IA.12 Divergence Forces|. L e
[A. 13 Standard Condition Functions. oo
[A.14 Verbosity Options| o e e e e
[B_Output File Format|
[B.1 VTK Files: .vts, .pvts, .vtu, and .pvtu (Visualization)
[B:2 Checkpoint Files: .h5, dat and xmi]
[C_Benchmarks|
IC.1 Falling Sphere|. o e
IC.2 Circular Inclusion|. o o o e
IC.3 Relaxation of Topography|
[C.4 Divergence] e e e e
IC.5 Drucker-Prager|
IC.5.1 Analytic Treatment|
IC.5.2 Model Setup|
IC.5.3 Numerical Resultsl o
[C6 Geomod 2004
IC.6.1 Extension| e e
[C.6.2 Shortening] e e
[CT Geomod 2008 o
IC.7.1 Stable Wedge| o
|C.7.2 Unstable Shortening|

|C.7.3 Brittle Shortening| L

CONTENTS

145

List of Figures

2.1 Pressure for a subduction model using (Q1-P0 elements and averaged pressures. Notice that, |

even when averaging the pressure, there 1s an even-odd artitact centered on the bottom. | . . 16
2.2 Strain rate invariant for a subduction model using Q1-Q1 elements| 16
2.3 Strain rate invariant and velocity arrows for a geologic model without hydrostatic correction. |

"The compressibility is so large on the bottom that the whole region falls down, dominating |

the dynamics.| L oL 17
4.1 Two blocks sliding past each other with a yielding region between them. 24
5.1 Strain rate invariant and velocity of viscous material in extension| 47
.2 Split Boundary| 48
.3 Strain rate invariant and velocity with complex boundaries| 49
[p.4 Inflow/Outflow Boundary| 50
[5.5 Strain rate invariant and velocity with inflow /outflow boundaries| 51
5.6 Strain rate invariant and velocity of viscous material in extension with a normal stress boundary| 53
5.7 Strain rate invariant and velocity of viscous material with a deformable bottom boundary| . . 54
.8 Sinusoidal Top| 54
.10 Geometry and boundary conditions for the fixed, deformed bottom boundary| 55
5.9 Strain rate invariant and velocity with initially deformed upper boundaryl 55
.11 Strain rate invariant and velocity for a deformed bottom boundary| 58
[5.12 Strain rate invariant for an extension model with the hydrostatic pressure subtracted out.| . . 59
.13 Multiple Viscous Materials| oo oo 59
.14 Strain rate invariant and velocity with multiple viscous materials| 60
5.15 Viscosities with multiple viscous materials|, 60
[5.16 Strain rate invariant and velocity of yielding material in extension| 62
.17 Viscosity of yielding material in extension| Lo 62
5.18 Accumulated post-yielding strain of yielding material in extension| 62
.19 Temperature and velocity for the thermal convection example| 65
.20 Temperature and velocity for the power-law creep model| 66
6.1 Schematic of dike example| oo o 68
6.2 Integrated strain for the dike model] oo oo 69
7.1~ Mapping between MicroFEM and Gale|. oo 000000 72
IA.1 Height ot plateau as a tfunction of the parameters| 105
IA.2 Geometry for HRS Erosion| 106
|C.1 Schematic of a Sphere falling through a Cylinder| 118
|IC.2 Relative Error in computed velocity vs. resolution| 120
IC.3 Schematic for the circular inclusion benchmarklo 000, 120

LIST OF FIGURES

|C.4 Pressure along the line y = x/2 for resolutions of 128x 128 (blue), 256 X256 (red), and 512x512

(black). The inclusion has a radius 7; = 0.1. Note that the pressure should be zero inside the

inclusion, but the numerical solutions consistently underestimate the pressure.. 121

|C.5 Error in the pressure outside the inclusion along the line y = x/2 for resolutions of 128x128 |

| (blue), 256x256 (red), and 512x512 (black). The inclusion has a radius r; = 0.1 122
IC.6 As in Figure[C.5[but zoomed in on a part a little away trom the inclusion.| 122
|C.7 Strain rate and velocities for a sinusoidal topography relaxing under gravity| 123
|C.8 Error in the height at the trough| oo oo 124
IC.9 Asin Figure|C.8] but with the error scaled with hA. So the medium-resolution error is multiplied |

| by 2 and the high-resolution error is multiplied by 4| 124
|C.10 Velocity and Strain Rate Invariant solution for the 2D Divergence benchmark. The variation |

| in the strain rate invariant is uniformly small.|.o 0000000 125

|C.11 Maximum error in the strain rate invariant for the 2D Divergence benchmark vs tolerance in |

the linear solver. The resolution is kept at 32x32, and the number of particles per cell is kept |

|C.12 Maximum error 1n the strain rate invariant for the 3D Divergence benchmark vs the number |

of particles in each cell. The resolution is kept at 16 x16x16, and the tolerance in the linear |

solver is kept at 1077 L 126
|C.13 The setup for the shortening experiment. The box is 1 unit on a side, and the low viscosity |
| region has a radius of 0.01 (its size is exaggerated).| L. 127

|C.14 Strain rate invariant for the yielding experiment with ¢ = 45 with two difterent resolutions: |

128 %128 and 256x256. Any differences in the fault angle between the two resolutions are |

swamped by uncertainties in determining the overall angle of faulting. |. 128

[00. The resolution for all three cases IS 266 x 206. L he highest strain rate observed in the case

|C.15 Strain rate invariant for the yielding experiment with three different maxStrainRate’s: 1, 10,

[for an Infinite maxStrainRate Is 74. 1. e 128
|C.16 Strain rate invariant for the yielding experiment with maxStrainRate’s of 10 and oo but with |
| a friction angle ¢ = 37°. The resolution for both cases 1s 256x256.] 129
[C.17 Strain rate invariant for the yielding experiment with four different minimumViscosity’s:10™°, |
| 10~%, 10—, 10—°. The resolution for all three cases is 256x256.f 129
|C.18 Numerical vs analytic results for tault angles as a tunction of internal angle of friction. | . . . 130
|C.19 Extension model setup. Reproduced, with permission, from Buiter et al. [11]. 131

|C.20 Strain rate invariant for the extension model for varying 7,,i, and €,,,,. From top to bottom,

they are: Dyin = 10°, émaz = 510" Dnin = 10°, émaz = 2-1077; Nnin = 107, €nge = 5-1077%

nmmzlo €maz _2 105, nmm_lo €mazr =D - 107% i = 10%, €00 = 21077 131

tlons of the various models are: 12hLVIb 400><75 LAPEX 2D: 301><71 Mlcroiem 201><61 |

SloMo: 401x71, Sopale: 401x71, Gale: 1024x128. Upper images reproduced, with permis- |

sion, from Buiter et al. [LL]] o o 133

|C.23 Shortening model setup. Reproduced, with permission, from Buiter et al. [I1].| 134

|C.24 Strain rate invariant for the numerical shortening models atter 14 cm of shortening. The |

resolutions of the various models are: [2ELVIS: 900x75, LAPEX-2D: 351x71, Microfem: |

201x36, Sopale: 401x71, Gale: 512x128. The upper portion of the figure 1s reproduced, with |

permission, from Buiter et al. [LI|« o o oo 135

|C.25 Strain rate invariant for the shortening model atter 14 cm of shortening for three different |

| resolutions: (a) 12832, (b) 256x64, and (c) 512x128.[. 136
|IC.26 Set up for the stable wedge benchmark. Image courtesy ot Susanne Buiter.| 137

|C.27 Strain rate invariant for the stable wedge benchmark within the wedge. Outside the wedge, |

the strain rates are large because ot the air’s low viscosity. The resolution is 256x64, and the |

wedge has translated 4 cm.| oL oL oL 137

LIST OF FIGURES 9

|C.28 Material particles for the stable wedge benchmark. Deformation at the tip is caused by a
| finite boundary cohesion. The odd structure at the tip is the result of the finite air viscosity,
| although the actual structure is not well resolved. The resolution is 256x64, and the wedge

[has translated 4 cl e 138
1C.29 Set up for the unstable shortening benchmark. Image courtesy of Susanne Buiter.| 138
|IC.30 Strain rate invariant for the unstable shortening benchmark at 10 cm of shortening with |

| resolutions of 128x32, 256x64, and 512x128.]o 139
|C.31 Material particles for the unstable shortening benchmark at 10 cm of shortening with resolu- |

| tions of 128x32, 25664, and HI2X128.| 140
|C.32 Integrated strain for the unstable shortening benchmark at 10 cm of shortening with resolu- |

[tions of 128x32, 256x64, and HI12X128.]o 141
[C°337Set up for the brittle shortening benchmark. Image courtesy of Susanne Buiter). 141
|C.34 Strain rate invariant for the brittle shortening benchmark at 10 cm of shortening with resolu- |

| tions of 128x32, 25664, and HI2x128.| 142
|C.35 Material particles for the brittle shortening benchmark at 10 cm of shortening with resolutions |

| of 128x32, 256x64, and SI2x128.| 143

|IC.36 Integrated strain for the brittle shortening benchmark at 10 cm ot shortening with resolutions
| of 128x32, 25664, and 512128 144

10

LIST OF FIGURES

Chapter 1

Preface

1.1 Who Will Use Gale?

The main audience for Gale is research scientists interested in modeling tectonic processes on long geological
time scales. Examples of problems that can be solved are the development of tectonic structures associated
with extension and compression, especially where localization is important. You do not have to be an expert
in finite element analysis or scientific computing to use this software.

1.2 Citation

Computational Infrastructure for Geodynamics (CIG) is making this source code available to you in the hope
that the software will enhance your research in geophysics. The underlying C code for the finite element
package was donated to CIG in July of 2005. A number of individuals have contributed a significant portion
of their careers toward the development of Gale. It is essential that you recognize these individuals in the
normal scientific practice by making appropriate acknowledgments.

The code is based on the method described in

e Moresi, L.N., F. Dufour, and H.-B. Miihlhaus (2003), A Lagrangian integration point finite element
method for large deformation modeling of viscoelastic geomaterials, J. Comp. Phys., 184, 476-497.

The code was originally developed by the Victorian Partnership for Advanced Computing (VPAC) and Louis
Moresi’s group at Monash University. Walter Landry of CIG and Luke Hodkinson of VPAC have enhanced
the code to satisfy the requirements of the long-term tectonics community. Roger Buck, Gus Correa, Robert
Bialas, Guillaume Duclaux, John Sheehan, Garrett Ito, Noah Fay, Neil de Laplante, Matthieu Quinquis,
Patrice Rey, Lara O’Dwyer, Louise Kellogg, Laetitia Le Pourhiet, Leonardo Da Cruz, Jolante Van Wijk,
Tristan Salles, Mark Fleharty, Taichi Sato, and Lester Anderson provided valuable user testing. The Gale
team requests that in your oral presentations and in your papers that you indicate your use of this code
and acknowledge the authors of the code, CIG (www.geodynamics.org), Victoria Partnership for Advanced
Computing (www.vpac.org), and Monash University (www.monash.edu).

1.3 Support

Gale development is supported by a grant from the National Science Foundation to CIG, managed by
the California Institute of Technology, under Grant No. EAR-0406751. However, most of the software
components below Gale have been developed by the Victoria Partnership for Advanced Computing (VPAC)
and Monash University. Some of the support for VPAC has come from subawards from CIG.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

11

www.geodynamics.org
www.vpac.org
www.monash.edu

12 CHAPTER 1. PREFACE

1.4 Gale History

Gale arose from discussions at an NSF-sponsored workshop on Tectonic Modeling held in Breckenridge,
Colorado, in June 2005; see Geodynamic Modeling of Tectonics Processes 2005 workshop report (www.
geodynamics.org/cig/workinggroups/long/workshops/2005/issues)). At that workshop, members of
the tectonics community advocated that CIG develop a new open-source software package for solving tectonic
problems. Existing private codes have seen a great deal of use in crustal and lithospheric deformation
problems such as orogenesis, rifting, and subduction. They have also been coupled with surface erosion
models, as well as being employed for deeper mantle dynamics problems. Gale is an open-source code that
is intended to cover these research areas, with the addition of 3D capability.

The development of Gale was jump-started by building on top of Underworld [3], a mantle convection
code developed by Louis Moresi’s group at Monash and the Victorian Partnership for Advanced Computing
(VPAC). Underworld was created as a parallel version of Ellipsis3D [6], a mantle convection code which grew
out of CitCom [7]. Walter Landry of CIG and Luke Hodkinson of VPAC are the primary developers of the
Gale-specific components.

www.geodynamics.org/cig/workinggroups/long/workshops/2005/issues
www.geodynamics.org/cig/workinggroups/long/workshops/2005/issues

Chapter 2

Introduction

2.1 About Gale

Gale is a parallel, two- or three-dimensional code that solves problems related to orogenesis, rifting, and
subduction. Gale starts with a collection of particles to track material properties such as density and, for
strain-softening materials, strain. At each point in time, a finite element mesh is superimposed over the
particles. This allows Gale to simulate problems with large deformations and irregular boundaries.

CIG developed Gale in response to community demand by building on existing work by VPAC and Louis
Moresi’s group at Monash University. The code is being released under the GNU General Public License.

2.2 Gale Computational Approach and Governing Equations

2.2.1 Infrastructure

Particles are the fundamental object in Gale. Particles store all of the material properties, including density,
strain, and thermal diffusivity. A logically regular finite element mesh is created at each time step. Material
properties are interpolated from the particles to the mesh, and the Stokes equations are then solved on that
mesh. This mesh can become quite distorted, as the boundaries of the mesh will be stretched to cover the
particles wherever they go. Once the Stokes equations are solved, the mesh is retained only to provide a
good initial guess for the next time step.

2.2.2 Units

Gale has no internal knowledge of units. So if you tell Gale that a box is 10 units across, it does not know
or care whether it is 10 cm or 10 km. You only have to make sure that you are consistent. For example, if
you give velocities in cm/year, make sure that your viscosities and lengths also use cm and years. However,
you may have to scale your units to make the solver work (see Section .

2.2.3 Basic Equations

We start by decomposing the stress tensor ¢ into pressure p and deviatoric stress 7

Tij = Tij = POij (2.1)

where § is the Kronecker delta. In its simplest form, Gale solves a conservation equation for momentum

Tijj — P =0, (2.2)

subject to the (incompressible) continuity equation

v =0, (2.3)

13

14 CHAPTER 2. INTRODUCTION

where v is the velocity. We use the convention that repeated indices (e.g., v;;) imply a sum over all
dimensions. So in three dimensions

Vi = VUgz + Vyy + Vs 2 (24)

Note that there is no explicit time dependency in the momentum Equation [2.2] Gale simulates creeping
flows, so acceleration terms are neglected and material motion evolves through a series of equilibria. If
your boundary condition has a time dependent component, then you may infer a time. For example, if the
boundaries move inwards at 1 mm/sec, then the solution when the boundaries have moved 5 mm would
correspond to 5 seconds.

Assuming a simple Newtonian fluid, we can write 7 in terms of the rate of strain tensor &

Tij = 20€ij =0 (Vij + vj4) s (2.5)

where 7 is the viscosity.

Note that equation 2.2 has no dependence on the magnitude of the velocity. Rather, only the derivative
of the velocity comes into play. This means that, in the absence of boundary conditions, you can take a valid
solution, add 10%° to all of the velocity components, and you will still have a valid solution. In practice, if
you do not specify the velocity somewhere, the code will have problems finding a solution.

This means that, in 2D, you must specify v, and v, for at least in one point in your simulation (it does
not have to be the same point).

2.2.4 Gravity

Equations [2:2] and [2.3] do not include the effect of gravity. Gravity is accounted for by adding a body force
term to Equation [2.2

Tijg — P = fi, (2.6)
where

fac = 0

fy = —agp. (2.7)

fz = 0

Note that the vertical direction is in the y direction, not the z direction. This makes it easy to switch
between 2D and 3D models without rewriting the entire input file.

2.2.5 Divergence Forces

It can sometimes be convenient to create a model where material is created within the simulation. For
example, magma chambers can be fed through small channels that emanate from far away, outside the
simulation. Simulating these small channels would be too computationally expensive. Instead, we can model
the magma as just being created in the chamber.

You do this by adding a divergence term to the continuity Equation (Eq. ,

'Ui,i = d7 (28)

where d is a scalar that can depend on anything: time, space, strain, etc. In this form, the divergence
modifies the velocity. However, since the velocity and pressure are not really independent, you can also
think of it as setting a condition on the pressure. For example, consider a one dimensional isoviscous case
with no gravity. You can write the momentum Equation (Eq. as

1 (Vi jj +vj.45) +pi = 0. (2.9)
In one dimension, Equation [2.§] becomes

Vo = d, (2.10)

2.2. GALE COMPUTATIONAL APPROACH AND GOVERNING EQUATIONS 15

which implies

2nd +p, = 0. (2.11)

So if you specify the divergence as a constant in one region and zero outside, that is equivalent to specifying a
pressure drop across the boundary of the region. This result also holds in general for spherical and ellipsoidal
regions, although not if the viscosity varies across the boundary of the region.

2.2.6 Rheology

Gale incorporates a number of different rheologies and allows you to create your own. For more complicated,
non-linear rheologies, Gale still solves Equation for the velocity. However, because the viscosity may
depend on the velocity and its derivatives, Gale now has to iterate until it reaches a self consistent solution
for the viscosity and velocity. See Section [2:2.8.4] for more details.

For details on the existing rheologies, see Section [A5] To create your own rheology, see Chapter [7] for
guidance.

2.2.7 Temperature

Equation [2.6] does not explicitly include the effect of temperature and heat transfer. Temperature can be
implicitly included by using a temperature dependent viscosity and/or modifying the gravitational force
to have a thermal buoyancy term. To make the simulation completely self consistent, we solve the energy
equation

T
%—t +0v-VT =&rV3T +Q, (2.12)

where T is the temperature, x is the thermal diffusivity, and @ is the rate of energy production (e.g., from
radiogenic sources). Note that Equation introduces time into the equation.

2.2.8 Numerical Solution
2.2.8.1 Artificial Compressibility

In Gale, the velocity and pressure are represented by linear (Q1) finite elements (formally, this is called a
Q1-Q1 scheme). Normally, this formulation is unstable. To stabilize it, we follow Dohrmann & Bochev [14]
[15] and add a compressibility term to the divergence equation

v +Cp=d, (2.13)
where
Cc = (M -D)
Moo= o v (@)
D = fﬂc dQ,

Q. is the finite element, and v (x) is its basis function. That is, we add a compressibility that is scaled by
the viscosity and proportional to the mass matrix and the area. So as we increase resolution, both of these
terms scale as the area of the element and go to zero.

Prior versions of Gale used constant elements for the pressure (a Q1-P0 scheme). That scheme admits
solutions that have an arbitrarily sized checkerboard pressure term. For simple viscous problems, the pressure
is not used any further than getting the velocity solution, which the checkerboard term does not affect.
However, with a yielding rheology, pressure plays a critical role in determining when materials yield. We can
moderate this checkerboard instability by averaging the pressure at the nodes of the elements. In practice,
this does not solve all of the problems. Figure shows a simple subduction model with the old Q1-P0
scheme and averaged pressures. Figure shows the new Q1-Q1 scheme.

These instabilities in the old Q1-P0 scheme also slowed down convergence, while the new Q1-Q1 scheme
is dramatically faster.

16 CHAPTER 2. INTRODUCTION

Figure 2.1: Pressure for a subduction model using Q1-P0O elements and averaged pressures. Notice that,
even when averaging the pressure, there is an even-odd artifact centered on the bottom.

Figure 2.2: Strain rate invariant for a subduction model using Q1-Q1 elements

2.2.8.2 Scaling

The new scheme is not without its downsides. First of all, the new code does not scale the physical quantities
as well as the old code. In particular, note that the units for Equations and are different. Equation
has been divided by viscosity and multiplied by length. So, if you have a viscosity of 102° Pa - s and you
express your viscosities in Pa - s, the compressibility pressure term will become too small and the code will
be unable to solve. One workaround is to scale the units of time and mass (e.g., seconds and kg) so that the
viscosities are around 1. So if the viscosities are around 10%°, then scale time and mass as

s — 10%s,
kg — 10%%kg.

This implies that a viscosity of 10?5 Pa - s becomes 1, and a velocity of 1071'm/s becomes 10'4. Viscosities
become small and velocities become large.

Scaling it this way means that you do not have to scale the length or stresses. You also do not have to
scale the density or gravity, since they only appear when multiplied by each other. The main things you
have to change are the viscosities and velocities. For thermal simulations, you also have to scale the thermal
diffusivity and heat production rate. If you are using the NonNewtonian Rheology (see Section ,
you have to scale A, refStrainRate, minViscosity, and maxViscosity. Note that the scaling for A is

non-trivial. It has units of s™1/"Pa~1, so in this case Ayew = Ao (1025)1/n.

2.2.8.3 Hydrostatic Pressure

Ideally, the compressibility term should be applied to the dynamic pressure, not the hydrostatic pressure.
This is not a problem in simple sandbox simulations, where the dynamic pressure is about the same size
as the hydrostatic pressure. However, in geological models, the hydrostatic pressure is much, much larger
than the dynamic pressure. This means that the compressibility term is far too large, leading to excessive
compressibility. As Figure [2.3] shows, this can completely alter the dynamics.

To fix this, you can subtract out the hydrostatic term. You can write Equation [2.6] as

2.2. GALE COMPUTATIONAL APPROACH AND GOVERNING EQUATIONS 17

StrainRatelnvariantField
1.8e+10 3.1e+12 6.1e+12 Q.1e+12 1.2e+13
R e

Figure 2.3: Strain rate invariant and velocity arrows for a geologic model without hydrostatic correction.
The compressibility is so large on the bottom that the whole region falls down, dominating the dynamics.

Tijj — Poi — 0P = foi +0fi, (2.14)

where pg is the hydrostatic pressure, and fj is the background buoyancy force that leads to a hydrostatic
pressure. Since pg and fy are constructed to be hydrostatic, they cancel each other. You can then rewrite

Equations [2.6] and [2.8] as

Tijg —O0Pi = Of;
vii+Cép = d (2.15)

Note that if you are simulating a simple viscous problem in a box, you never even use the complete
pressure. In the general case such as with a yielding rheology, the viscosity may depend on the overall
pressure.

2.2.8.4 Uzawa Algorithm

Using standard finite-element techniques, you can collect all of the terms together and represent them in

matrix form
(é(Tg)(Z):(é) (2.16)

where K is a complicated submatrix depending on material properties, G is the simple gradient operator, C
is the artificial compressibility term, f is the body force (e.g., gravity), and d is the divergence term. This
implies the separate relations

Kv+Gp = f
GTv+Cp = d-

In order to solve this, it turns out to be useful to solve a simplified form of

(2.17)

(GTK_lG) z=r,

where r is given and z is unknown. Starting from an approximate solution to this equation makes it easier
to find a solution to the complete equation. The choice used in Gale is to approximate GT K~'G with

Q = G [diag (K)] ' G.

@ is known as a preconditioner. To actually solve Equation we use the Uzawa algorithm [5]. In
particular, the steps are

1. Start with an initial guess of ¢y of the pressure-like variable.

2. Solve K ug = f — Gqqp for ug.

18 CHAPTER 2. INTRODUCTION

3. Calculate the residual ro = GTug + Cqo — d.

4. do

5. k=1

6. Solve Qzx_1 = r)_1 for z;_1.
7. if k==1

8. $1 = 2o

9. else
10 B = Zhoalhol

: P

11. S =Tp—1+ Bsp_1
12. end if

13. Solve Ku* = Gsy, for u*.

Zg—lrk—l
sT(GTu*—Msy)

14. o=
15, qu+1 = qr +asg

16. Upy1 = U — ou™

17. TR = ThE_1 —a(GT * —Msk)
18. k=k+1

19. while (ug4+1 — ug) /uk+1 > linear tolerance

That will give us a single solution to Equation with a certain viscosity. However, because of yielding or
strain-rate dependent rheologies, the viscosity will change and the solution will not be consistent. To make
it consistent, we need to recompute the viscosities with the new solution for the pressure and velocity. Then
we solve Equation [2.17] again using our previous solution for the pressure as a starting point. We continue
this process until the change in the velocity is less than the non-linear tolerance.

Chapter 3

Installation and Getting Help

3.1 Introduction

Installation of Gale on a desktop or laptop machine is, in most cases, very easy. Binary packages have
been created for the most common platforms, i.e., Linux, Mac OS X, and Windows. Installation on other
architectures or on parallel machines requires building the software from the source code, which can be
difficult for inexperienced users.

3.2 Binaries

If you do not need to run on parallel machines, the easiest way to install Gale is to download binaries for
your platform from the Gale website (geodynamics.org/cig/software/packages/long/gale/)). Then you
can run Gale from the command line or DOS prompt. CIG provides binaries for Linux, Mac OS X (10.4 or
greater), and Windows (2000 and XP).

3.3 Building from Source

Read this only if the binaries are not sufficient for you.

3.3.1 System Requirements

Gale works on a variety of computational platforms and has been tested on workstations running
e Mac OS X 10.4.6 (Intel)
e Windows Vista
e Debian stable (x86 and AMDG64), testing (x86 and AMDG64), and unstable (x86)

Gale has also been tested on clusters running RedHat Enterprise Linux 3 (EM64T).

3.3.2 Dependencies

In order to build Gale, you must have the headers and development libraries for

e MPI
e PETSc 3.0 (not 3.1!)
e libxml2

You must also have python 2.2.1 or greater installed. If you do not already have MPI, then in many cases
PETSc can install a version for you. Installing PETSc also requires a Blas/Lapack implementation, which,
again, PETSc can install for you.

19

geodynamics.org/cig/software/packages/long/gale/

20 CHAPTER 3. INSTALLATION AND GETTING HELP

3.3.3 Downloading the Code

You can get the source for the latest release from the Gale website (geodynamics.org/cig/software/
packages/long/gale/). In that tarball is the file INSTALL. For some platforms, there are platform-specific
instructions. Generally, the hardest part is not installing Gale itself, but PETSc.

3.3.3.1 Source Code Repository (Experts Only)

Advanced users and software developers may be interested in downloading the latest Gale source code directly
from the CIG source code repository, instead of using the prepared source package. To check whether you
have a Mercurial client installed on your machine, type:

hg
You should get a help message that starts with:

Mercurial Distributed SCM

Otherwise, you will need to download and install a Mercurial client, available at the Mercurial Website
(mercurial.selenic.com). Then the code can be checked out with the following commands:

hg clone http://geodynamics.org/hg/long/3D/gale gale

hg clone http://geodynamics.org/hg/long/3D/gale/PICellerator gale/PICellerator
hg clone http://geodynamics.org/hg/long/3D/gale/StGermain gale/StGermain

hg clone http://geodynamics.org/hg/long/3D/gale/StgDomain gale/StgDomain

hg clone http://geodynamics.org/hg/long/3D/gale/StgFEM gale/StgFEM

hg clone http://geodynamics.org/hg/long/3D/gale/Underworld gale/Underworld

hg clone http://geodynamics.org/hg/long/3D/gale/config gale/config

hg clone http://geodynamics.org/hg/long/3D/gale/glucifer gale/gLucifer

You can then update your checkout with the commands

cd gale

hg pull

hg up

cd PICellerator
hg pull

hg up

cd ../StGermain
hg pull

hg up

cd ../StgDomain
hg pull

hg up

cd ../StgFEM
hg pull

hg up

cd ../Underworld
hg pull

hg up

cd ../config
hg pull

hg up

cd ../glucifer
hg pull

hg up

geodynamics.org/cig/software/packages/long/gale/
geodynamics.org/cig/software/packages/long/gale/
mercurial.selenic.com

3.4. SUPPORT 21

3.4 Support

The primary point of support for Gale is the CIG Long-Term Crustal Dynamics Mailing List (cig-long@
geodynamics.org). Feel free to send questions, comments, feature requests, and bugs to the list. The
mailing list is archived at

(geodynamics.org/pipermail/cig-long/)
You may also use the bug tracker
(geodynamics.org/roundup)

to submit bugs and requests for new features.

cig-long@geodynamics.org
cig-long@geodynamics.org
geodynamics.org/pipermail/cig-long/
geodynamics.org/roundup

22

CHAPTER 3. INSTALLATION AND GETTING HELP

Chapter 4

Running Gale

4.1 Basic Usage
If you downloaded binaries for your platform, you can run the Gale executable directly. For example,
./Gale-1_6_1 input/cookbook/yielding.xml

will output

TimeStep = 0, Time = 0

TimeStep = 1, Time = 0.010764
TimeStep = 2, Time = 0.0214745
TimeStep = 3, Time = 0.0321333
TimeStep = 4, Time = 0.0427393
TimeStep = 5, Time = 0.0532923
TimeStep = 6, Time = 0.0637925
TimeStep = 7, Time = 0.0742399
TimeStep = 8, Time = 0.0846353
TimeStep = 9, Time = 0.0949793

It will also create a great deal of output in the directory output/.
If you do not specify an input file, you will get no output. If Gale cannot find the file, you will get an
error:

Error: File input/cookbook/foo.xml doesn’t exist, not readable, or not valid.

Due to quirks in some implementations of MPI, you may have to specify the complete path to the input file
(e.g., ./Gale-1_6_1 /home/juser/gale/input/cookbook/yielding.xml).

In general, Gale does not have many defaults, so almost everything must be specified in the input file.
For examples of how to create your own input files, see Chapter [5| For a complete description of the input
file format, see Appendix [A]

If you compile Gale yourself, you can run it from where you installed it. If running in parallel on your
own machine, prepend mpirun or mpiexec (depending on your local implementation of MPI). For example,
if your computer has two cores, then

mpirun -np 2 bin/Gale /home/juser/gale/input/cookbook/yielding.xml

will use both cores.

23

24 CHAPTER 4. RUNNING GALE

4.2 Advanced Usage

4.2.1 Drucker-Prager Rheology

The Drucker-Prager rheology models a material that is rigid until the shear stress reaches a breaking, or
yield, stress. Once the material yields, Gale reduces the viscosity of the material such that, given the strains
applied to the material, the induced stress will now equal the yield stress. Unfortunately, there are two
problems with this.

1. This is a numerical process, so the viscosity may be set too low. If the viscosity is too low, then the
material will slip too easily, and there may be problems with convergence.

2. There is no length scale inherent in this method. So as you increase resolution, you will get finer
and finer faults. This would not be too much of a problem if you just got the same faults, but more
finely resolved. But what happens is that you tend to get more and more faults everywhere. The
algorithm never converges to a single answer, and so it is difficult to say whether any results you get
are reasonable. Moreover, if the size of your faults is always only a few points, you may get a systematic
error in the fault angles [I8].

Gale has two ways of solving this problem. One is to just set the minimum viscosity. This robustly solves
the first problem. It also, in a sense, solves the second problem. Consider a model problem where two blocks
are sliding against each other as in Figure If the yielding stress only depends on cohesion, then a length
scale naturally comes out

_ Nmin®

anm - T?

where 7,4, is the minimum viscosity, v is the velocity of the sliding blocks, and C' is the cohesion.

yielding region V

Figure 4.1: Two blocks sliding past each other with a yielding region between them.

4.2. ADVANCED USAGE 25

For a general Drucker-Prager rheology, though, the yield stress depends on the pressure as well. In that
case, as you look at material deeper and deeper in the earth, where the pressure, and hence yield stress, is
higher, then the length scale will get shorter and shorter. If you set 7,,;, such that, at the surface, you get
a reasonable length scale for your resolution, then the length scale will be much smaller and unresolved in
the mantle.

So the other solution Gale provides is to set a maximum strain rate. It does this by looking at what the
strain rate is, and making sure that the viscosity is not set so low such that the strain rate will exceed the
maximum strain rate. This provides a length scale even more simply

I v

bmaz = .
€max

In practice, both of these quantities may need to be set. A minimum viscosity may assist in taming
irregularities arising from activities on the surface, such as landslides. A maximum strain rate, in the
mean time, will assist in ensuring that the code is convergent. Both of these parameters are used for the
Drucker-Prager benchmark (Section , and the Geomod benchmarks (Sections and .

4.2.2 Direct Solvers

If you have a problem with strong viscosity gradients, the default solver (GMRES) may converge very slowly.
Strong viscosity gradients occur when you start with materials with different viscosities (e.g., Appendix
and , or when materials yield (e.g., Appendix .

One solution is to use a direct solver instead of GMRES. PETSc has a facility where you can use
command-line arguments to change the solver. For example, on a single machine, to use a direct LU solve,
you only need to append arguments to the command line

./Gale-1_6_1 input/cookbook/yielding.xml -pc_type lu -ksp_type preonly

In parallel, the analogous approach would be to use Mumps, a parallel direct solver. You first need to make
sure that your version of PETSc was installed with Mumps. If you built PETSc yourself, you need to add
the option ”--download-mumps=yes” when configuring.

Once that is done, enabling it is again just appending a few arguments to the command line

./Gale-1_6_1 input/cookbook/yielding.xml -pc_factor_mat_solver_package mumps \
-ksp_type preonly -pc_type lu -mat_mumps_icntl_14 100

Note that this is different from previous versions of Gale. Petsc changed the syntax for calling Mumps
solvers. Also, Mumps changed the default amount of memory it allocates. This is not an issue for small
simulations, but larger simulations can easily run out of memory. The option ”-mat_mumps_icntl_14 100”
tells Mumps to allocate more memory.

4.2.3 Multigrid

For very large problems and 3D problems in general, the direct solver may not work well. In that case, you
can try multigrid. To do that, add the plugin

<struct>
<param name="Type">StgFEM_Multigrid</param>
<param name="Context">context</param>
</struct>

to the beginning of the file, and add the components

<struct name="mgSolver">
<param name="Type"> PETScMGSolver </param>
<param name="levels"> mglevels </param>
<param name="opGenerator"> mgOpGenerator </param>

26 CHAPTER 4. RUNNING GALE

</struct>
<struct name="mgOpGenerator">

<param name="Type"> SROpGenerator </param>

<param name="fineVariable"> VelocityField </param>
</struct>

You may have to modify mglLevels for your problem.

4.2.4 Command-Line Parameters

You can also change the default values of the input file without modifying that file by appending arguments.
For example, to change only the number of time steps from the default value of 10 to 20, use the following
command

./Gale-1_6_1 input/cookbook/yielding.xml --maxTimeSteps=20
You can append any number of modified parameters in one unbroken line (here shown wrapped around)

./Gale-1_6_1 input/cookbook/yielding.xml --maxTimeSteps=20 --dim=3 --elementResI=64
--elementResJ=64 --elementReskK=64 --particlesPerCell=60 --dumpEvery=10

4.2.5 Checkpointing

Gale can save the state of the simulation so that it can be restarted from that point. To save the state for
every time step, add the line

<param name="checkpointEvery">1</param>
to the variables at the end of the input file or add
--checkpointEvery=1
to the command line. To restart from step 5, add
--restartTimestep=5

to the command line.
Note that the example input files do not, by default, save and restore the temperature. To enable that,
add the line

<param>TemperatureField</param>
after the lines

<list name="FieldVariablesToCheckpoint">
<param>VelocityField</param>
<param>PressureField</param>

4.2.6 Debugging Input Files

It can often happen that you set up an input file incorrectly and try to run it, but Gale never gets far enough
to tell you what you did wrong. The first thing you should do is to turn on verbose output as in Section
That way, you can look at the residual for the linear and non-linear solvers. If the residuals go up and
down, even after a number of iterations, then the solver will probably not converge. On the other hand, if
the residuals go steadily down, you can determine whether you should try different input parameters or just
wait longer.

4.3. OUTPUT AND VISUALIZATION 27

Even with that, you may not know what to fix. For example, you may have unwittingly set the minimum
viscosity for a yielding material to be too low. If the non-linear solver never converges, then you will not be
able to see that you specified too low of a minimum viscosity. One way to get around this is to temporarily
set the tolerance for the non-linear solver (nonLinearTolerance) to be very large. Another way is to set
the maximum number of non-linear iterations (nonLinearMaxIterations) to be relatively small. Then Gale
will produce output that, while it may not be a good solution to the Stokes equations, nevertheless gives
you clues on how to fix the input file.

4.3 Output and Visualization

The sample input files will produce a directory in which you will find a number of files. The formats of these
files are described fully in Appendix

The default setting is to create VTK files every 10 time steps. To change the frequency for creating VTK
files, you need to change the parameter dumpEvery. For example, if you modify the line with dumpEvery to

<param name="dumpEvery">25</param>

then the VTK files will only be created every 25 time steps. Similarly, to change the frequency of checkpoints,
you need to change the parameter checkpointEvery. You can change the value to any number you choose.

There are a number of different options for visualizing the data. The easiest way is to use the VTK files.
These files are in a standard, self-describing file format that can be easily visualized with several different
visualization programs, e.g., ParaView (paraview.org), MayaVI (mayavi.sf.net), and Visit (www.1llnl.
gov/visit)). ParaView is recommended as it is easy to get working, easy to use, and scales to large data
sets.

Another option is to use the scripts in the tools/ directory to convert the VTK files into CSV format.
Then the data can be easily manipulated with standard tools like Python or Matlab.

paraview.org
mayavi.sf.net
www.llnl.gov/visit
www.llnl.gov/visit

28

CHAPTER 4. RUNNING GALE

4.3.1 Basic Visualization with ParaView

These instructions are for Paraview version 3.6.1. To visualize step 10 of input/cookbook/yielding.xml,

1. Start Paraview and open a new data file: File > Open

Recent Files
Load State

Save State
%,

'@ Save Screenshot
Export

'[é?_: Save Animation
Save Geometry

5 connect

'fi? Disconnect
Exit

Ctri+Q

Edit Miew Sources Filters Animation

)

Tools

Help

|v
Q= . @

Object Inspectar
Properties |_Display [Information |
i ppply | @ Reset | 3% Delete, 2
Open -] 4

Representation

Time: |O ||

K<l > 0> 5
BT I L3 COPs 905 I 1 .@-@

2. A file dialog screen will appear. Navigate to the output directory and select fields.00009.pvts. Then
click the green “Apply” button. Paraview will display a pseudocolor plot of the strain rate invariant.

4.3. OUTPUT AND VISUALIZATION 29

File Edit Mew Sources Filters Animation Teols Help
e BW ? G Al >R e I
= Qg. £2% © strainRatelnvariantField |' |* ° surface |~ X e ;ﬂ a:; gi ;Y_g ﬁ ﬁi
VP RROESLSDO

Pipeline Browser m‘ _lil, .El

»

1
B buittin:

Object Inspectar
Properties [Display | Information]

i apply @ Reset

2

® Cell/Point Array Status

2 VelocityField
VelocityMagnitudeField
WelocityGradientsField
VelocityGradientsinvariantField
StrainRateField

VorticityField
StrainRatelnvariantField
PressureField

StressField

ViscosityField

LI T T+ B T < B« B s B+

IS S & &8 & 8 & &

3. You can instead plot the pressure by first clicking on the “Display” tab.

30

CHAPTER 4. RUNNING GALE

Eile Edit

Miew Sources Filters

p &8 %2 (&
= Qg Q © StrainRatelnvariantField

EOCPRPOE

Pipeline Browser

1
B buittin:

Object Inspectar

Properties | Display [Information]

View

® visible Zoom 1

® Selectable

— Color

® |nterpolate Scalars
Map Scalars
Apply Texture Mone

Color by < StrainRatelnyariantFiel

Edit Color Map..

Animation

-
- -
2|

| (D)

Tools

Help

K <l > 0> Pl B tmeo I

H
RIS CE

4. Click on the drop-down list to the right of “Color by” and select “PressureField.”

4.3. OUTPUT AND VISUALIZATION

File Edit Mew Sources Filters Animation Teols Help

e &% g P e KA E M B
E g&l ﬂ < PressureField |' |v Surface |' X J Lo gi 4-3 4-2 ﬁ-& .

EOQUURPOEL L
Pipeline Browser m‘_lil,.@

ﬁ builtin:

Object Inspectar
Properties | Display [|nformation]
View =
® visible Zoom 1
® Selectable L
— Color

® |nterpolate Scalars
Map Scalars
Apply Texture Mone
Color by < PressureField
Edit Color Map..

< | (D)

5. Now you can plot the velocity as arrows on top of the pressure: Click on the “Glyph” symbol

o

and then press the green “Apply” button.

32

CHAPTER 4. RUNNING GALE

Eile Edit

TELER T

Qg Q © StrainRatelnvariantField

HOUEURRDOE

Miew Sources Filters Animation Tools

Help

(g

Surface

o=

=g
[£)

=

Pipeline Browser

= 4

1
i buittin:
|
@ W fields. 00009, pyts

Object Inspectar

Properties [Display | Information]

= Apply @ Reset ?
Scalars StrainRatelnvariantField |
Vectors VelocityField
Glyph Type Arrow
- Arrow
Tip g— l
Resclution 5
Tip Radius (J—— |0.1
Tip Length = F—— |0.35
Shaft 9
Resclution

<|'

]
| @33'

K <l > 0> Pl B tmeo I

H
RIS CE

6. You can temporarily remove the pressure to see the velocities better by clicking on the “eye” graphic
@ pext to fields.00009.pvts.

4.3. OUTPUT AND VISUALIZATION

File Edit Mew Sources Filters Animation Teols Help

& BB 7 [MKE

E Qg Q © StrainRatelnvariantField

E9CPBPOT

Pipeline Browser
ﬁ huiltin:
@.Ifields.OOOOQ.p\fts
=g

K<l » > P B mmeo —
PR EABEEdAE (6 -

Object Inspectar
Properties [Display | Information]

i ppply | @ Reset . R Delete 2

-

Scalars

Vectors

StrainRatelnvariantField

VelocityField

Glyph Type Arrow
=- Arrow

Egsolution O— |6—
Tip Radius O——— o1
Tip Length —O—— [035_______
Shaft o—10

Resclution

il | [

7. You can also visualize the magnitude of the velocity: First click the “eye” again, then click on the text
fields.00009.pvts.

34 CHAPTER 4. RUNNING GALE

File Edit Mew Sources Filters Animation Teols Help
e BW ? G Al >R e I
= Qg. foh e PressureField |v |* ° surface |~ X e ;ﬂ a:; gi ;Y_g ﬁ ﬁi
VP RROESLSDO

Pipeline Browser m‘ _lil, .El

»

1
B buittin:

@ P Glyphl

Object Inspectar
Properties [Display | Information]

B spply | @ Reset | | 3% Delete

g

® Cell/Point Array Status

2 VelocityField
VelocityMagnitudeField
WelocityGradientsField
VelocityGradientsinvariantField
StrainRateField

VorticityField
StrainRatelnvariantField
PressureField

StressField

ViscosityField

LI T T+ B T < B« B s B+

IS S & &8 & 8 & &

8. Next click on the “Display” tab.

4.3. OUTPUT AND VISUALIZATION

File Edit Mew Sources Filters Animation Teols Help

P& BB 2 /* LB oo KA > M B el | S

EOQUURPOEL L

Pipeline Browser ﬂ‘_lil“@

1
 buittin:
@ P Glyphl
Object Inspectar
Properties | Display |nformation
frs :
e Neone

< PressureField |v
Edit Coler Map... Rescaleto

[

o R

e axes Edit
g

(] (D)

= Qg Q © Pressurerield |' |v

BRI W R U B T [

=] 4

9. Finish by clicking on the drop-down list to
Field.”

the right of “Color by” and selecting “VelocityMagnitude-

36

CHAPTER 4. RUNNING GALE

_@_ﬁ _@ @

B & 5 e veloctyMagnitudeField

EOQUURPOEL L

Pipeline Browser ﬂ‘_lil“@
ﬁ builtin:
O-Glyphl
Object Inspectar
Properties | Display |nformation
pire :
e Neone

< MelocityMagnitudeField |v
Edit Coler Map... Rescaleto

[

o R

e axes Edit
g

(] (D)

@n’“ K<l > I P % mmelo | S
|» susce PR A dA @ -

=] 4

10. Now you can look at the particles. Starting over, open picIntegrationPoints.00009.pvtu and click

on the green “Apply” button.

4.3. OUTPUT AND VISUALIZATION 37

File Edit Mew Sources Filters Animation Teols Help

Za AL RE @ e KA > E el B
B Q5 o viscosty E |+ surtace FiX Ak dAk @6
EQUPRTOEL @@L

Pipeline Browser E‘_lil“@ _____

ﬁ builtin:

piclntegraticnPoints. 00009, pytu

Object Inspectar
Properties [Display | Information]

i apply @ Reset

2

® Cell/Point Array Status
2 Viscosity

Post Failure Strain
Stress

Density

Material Index
Alpha

Thermal Diffusivity
Currently Yielding
Orientation

LR R & & 8 8 & &

Q0000 009

This displays the viscosity of the particles. The red points represent the high viscosity ball, while the
blue points represent material that has yielded.

11. To see explicitly which material has failed plastically, click on the “Display” tab and change the “Color
by” box to “Post_ Failure Strain.”

CHAPTER 4. RUNNING GALE

38

File Edit Mew Sources Filters Animation Teols Help

& B8 ? ®RA : <l > 0> bR e B
B & 30 o Post_Faiure Strain |' |* ° surface B S O G D S5 @ G

BEOQUURROLOQEL DL
Pipeline Browser E‘_lil“@ _____

ﬁ builtin:

piclntegraticnPoints. 00009, pytu

Object Inspectar S
Properties | Display [|nformation]
View =
® visible Zoom Te Dat
® Selectable L
— Color

® |nterpolate Scalars
Map Scalars
Apply Texture Mone

Color by < Post_Failure_Strain |'

Edit Color Map... Rescalet

-] A

12. Now we will visualize a 3D simulation. Run Gale with the input file input/cookbook/viscous_extension3D.xml
and open fields.00009.ptvs. Paraview will display an outline of the 3D volume.

4.3. OUTPUT AND VISUALIZATION 39

File Edit Mew Sources Filters Animation Teols Help

e BW ? K<l » P S e
[& 3 @soid coer |~ |+ ° outiine EI - O G G S G
VPRV OEL B L

Pipeline Browser E‘ lil, .@

1
B buittin:

Object Inspectar
Properties [Display | Information]

i apply @ Reset

2

® Cell/Point Array Status

2 VelocityField
WelocityMagnitudeField
VelocityGradientsField
VelocityGradientsinvariantField
StrainRateField
VorticityField
StrainRatelnvariantField
PressureField
StressField
ViscosityField

IR S &8 8 8 & & ¥

Q00000009

13. Click on the button near the top center labeled "Outline” and change it to "Surface”.

40 CHAPTER 4. RUNNING GALE

File Edit Mew Sources Filters Animation Teols Help

e BW ? ® e KA > B e
L s &5 @soid color Outline i R ddis

VO RE QTS O |uee

Pipeline Browser E‘ | Surface With Edoes

1
B buittin:

Object Inspectar
Properties [Display | Information]

i ppply | @ Reset . R Delete 2

® Cell/Point Array Status

2 VelocityField
VelocityMagnitudeField
WelocityGradientsField
VelocityGradientsinvariantField
StrainRateField

VorticityField
StrainRatelnvariantField
PressureField

StressField

ViscosityField

LI T T+ B T < B« B s B+

IS S & &8 & 8 & &

14. Next click on the button near the top left labeled ”Solid Color” and change it to "StrainRatelnvariant-
Field”

4.3. OUTPUT AND VISUALIZATION 41

File Edit Mew Sources Filters Animation Teols Help

& B8 ? ®RA SIS Y - e B
D r‘a i @ solid Color Surface |v X ‘8 ;ﬂ ﬁ;’; 31 :g ﬂ E @ @

% Sclid Color

cellMormals
2 VelocityField
VelocityMagnitudeField
VelocityGradientsField
VelocityGradientsinvariantField
StrainRateField
VorticityField

F v

Fipeli

B buittin:

QN0 00 00

PressureField

Object Inspectar
Properties [Display | Information]

i ppply @ Reset | 3 Delete

g

® Cell/Point Array Status

2 VelocityField
WelocityMagnitudeField
VelocityGradientsField
VelocityGradientsinvariantField
StrainRateField
VorticityField
StrainRatelnvariantField
PressureField
StressField
ViscosityField

IR S &8 8 8 & & ¥

Q00000009

15. You can now rotate it by clicking and holding with button 1 on your mouse. You can zoom in and out
by clicking and holding button 2, and translate by clicking and holding button 3.

42 CHAPTER 4. RUNNING GALE

File Edit Mew Sources Filters Animation Teols Help

2 &8 e KAl >R melo &
E r‘.‘_{ Q < EStrainRateField |' I‘~'1ag|nitut|v Surface |v X GJ Lo g;: ‘_g ‘_ﬂ L .
B0V RBOEL DL

Pipeline Browser m‘_lil“@ _____

ﬁ builtin:

Object Inspectar
Properties [Display | Information]

i ppply @ Reset | 3 Delete

g

® Cell/Point Array Status

2 VelocityField
VelocityMagnitudeField
WelocityGradientsField
VelocityGradientsinvariantField
StrainRateField

VorticityField
StrainRatelnvariantField
PressureField

StressField

ViscosityField

IS S & &8 & 8 & &

LI T T+ B T < B« B s B+

4.3.2 Visualizing Movies with Paraview

To create a movie, with Paraview, you need to create a special pvd file that stitches all of the individual
frames together. You can do this with the utility tools/generate_pvd. You generally invoke it as

generate_pvd NAME TYPE START END STEP

where NAME is usually either "fields” or "picIntegrationPoints”, depending on whether you want to animate
the fields or the particles. If you create your own swarm of particles, then they will have their own VTK
files, and you would use that name with generate_pvd.

TYPE is either 'u’ for unstructured (particles), or ’s’ for unstructured (fields). START is the time of the
first time step, END is the last step, and STEP is the step size between successive frames. So the command

generate_pvd picIntegrationPoints u 0 100 10

will generate picIntegrationPoints.pvd. That file starts at t=0 and includes every 10’th step up to and
including 100. So to animate the post yielding strain in input/viscous_extension3D.xml, you would run,
from the top directory,

generate_pvd fields s 0 9

Loading up fields.pvd in Paraview gives you access to the movie buttons

4.4. GAUGING ACCURACY 43

Ko<l > 0> M R

4.3.3 Generating CSV files

The script tools/vtk2csv.py converts VTK files to a simple comma separated format. To run it, you must
have Paraview installed. Included with the Paraview installation is a utility pvpython. This is a version of
Python set up to automatically have access to all of the Paraview libraries. It takes any number of VTK files
on input and outputs corresponding CSV files. So to convert the file fields.00009.pvts and all associated
vts files, you run it as

pvpython vtk2csk.py fields.00009.pvts

and it will output fields.00009.csv.

4.4 Gauging Accuracy

Gale makes a number of approximations. Before trusting any results you get from Gale, you must vary a
number of parameters to insure that the results are not an artifact of Gale’s approximations.

The most obvious parameter to vary is the mesh resolution. The grid is where the Stokes equations are
solved, and defines the resolution of everything in the “fields” output files (e.g., velocity, pressure, strain rate,
etc.). The resolution of the grid is determined by elementResI, elementResJ, and elementReskK.

But sometimes the mesh resolution is not the principal source of error. For example, for the 2D Divergence
benchmark (Section , the principal source of error is the tolerance in the linear solver. This is because
the solution can be represented exactly on even a tiny grid, so the determining factor is just how well
the equations are solved on the mesh. To vary the tolerance for the linear solve, change the parameter
linearTolerance.

Similarly, the tolerance for the non-linear solve may determine the overall error. You can set that tolerance
with the parameter nonLinearTolerance. You still have to be careful, though, because the solver can still
settle on a wrong solution as in the Drucker-Prager benchmark (Section . The initial solution always
gives a yielding angle of 45°. Only after a number of iterations does the solution finally move to the correct
angle. To fix this, you can set nonLinearMinIterations.

The number of particles can also determine the error, as in the 3D Divergence benchmark (Section |C.4]).
There is a more or less constant number of particles per mesh element. If you have a smooth velocity field,
but a complex particle properties field, you may need more particles for each element. To set the particle
resolution, change the parameter particlesPerCell.

When using a yielding rheology, you should vary minimumViscosity and maxStrainRate (see Section
4.2.1)).

For some problems where you are comparing against a solution over an infinite domain (e.g. Sections
, then you may need to vary the size of the box (minX, minY, minZ, maxX, maxY, maxZ). Finally,
you may need to vary the scaling factor for time steps (dtFactor) (see Section [A.1.4)).

How much to vary the various parameters depends upon each parameter. For some parameters, such as
the resolution, changing it by a factor of two is often good enough to tell whether your error depends on
resolution. For others, such as the tolerance for the solver, you may want to vary it by a factor of ten (e.g.

Figure [C.11]).

44

CHAPTER 4. RUNNING GALE

Chapter 5

Cookbooks

5.1 Introduction

In this chapter, you will edit a template file (input/cookbook/template.xml) to create customized input
files. You should be able to use the template file as a basis for most of your own input files. There are two
things in the template file, however, that might need modification: the force of gravity, which by default is
set to 1 (if you are using cgs, for example, the force of gravity must be changed to 980), and the normal
velocity on all boundaries except the top, which are set to zero. Beyond that, you only need to specify where
to place materials.

5.1.1 Adding Lines to the Template File

Unless otherwise specified, when you are instructed to add sections to the input ﬁleﬂ that text should be
added after the line

<struct name="components">
at the beginning of the file, and before the lines

</struct>
<list name="FieldVariablesToCheckpoint">

The template file is indented to make it easier to notice if you add a component in the middle of another
component. This is solely for the benefit of humans. Gale does not pay attention to indentation when
reading the files.

5.1.2 Adding Variables to the Template File
When you are instructed to add a variable, you must add it at the end of the file before the closing line
</StGermainData>

Finished versions of all of these examples are found in input/cookbook/.

5.2 Viscous Material

This example simply fills up the computational domain with a single viscous material. It is a valid input
file, but will not run as nothing is moving. This file mainly serves as the basis for subsequent examples.

1To copy and paste from this PDF with Adobe Acrobat, right click to get the context menu and select “Allow Hand Tool to
Select Text.”

45

46 CHAPTER 5. COOKBOOKS

1. First, copy template.xml to myviscous.xml to edit as follows.

2. Add in a material. The simplest variety is a purely viscous material, so add a box covering the whole
domain:

<struct name="boxShape'">
<param name="Type">Box</param>
<param name="startX">minX</param>
<param name="endX">maxX</param>
<param name="startY">minY</param>
<param name="endY">maxY¥</param>
<param name="startZ">minZ</param>
<param name="endZ">maxZ</param>

</struct>

Note: Default parameters for the box (e.g., minX, maxX, minY, etc.) are already defined in template.xml.

3. Then set the material’s viscosity

<struct name="backgroundViscosity">
<param name="Type">MaterialViscosity</param>
<param name="eta0">1.0</param>

</struct>

Remember that Gale has no internal knowledge of units, so if you think of everything in cgs, then this

. . . . g
implies a viscosity of 1_—%—.

4. Finally, you create the material, using the components just created.

<struct name="viscous">
<param name="Type">RheologyMaterial</param>
<param name="Shape">boxShape</param>
<param name="density">1.0</param>
<list name="Rheology">
<param>backgroundViscosity</param>
<param>storeViscosity</param>
<param>storeStress</param>
</list>
</struct>

The storeViscosity and storeStress parameters are standard components that enable you to get
the viscosity and stress information on each particle.

5. Save this file, as it will be the basis for other examples that follow.

6. You can now run this example, and the output will go into the directory output. If you want to run
in 3D, you only need to change the line after

<param name="outputPath">./output.template</param>
from

<param name="dim">2</param>
to

<param name="dim">3</param>

You can compare your result with the worked example in the file input/cookbook/viscous.xml.

5.3. VISCOUS MATERIAL IN SIMPLE EXTENSION 47

5.3 Viscous Material in Simple Extension

The input file you created in Section [5.2]is valid, but nothing moves, so Gale will output errors if you try to
run it. In this next example, you will make the material extend by having the right boundary move.

1. Copy myviscous.xml to myviscous_extension.xml.

2. Make the right boundary move by changing the line after this section
<param name="type">WallVC</param>
<param name="wall">right</param>
<list name="variables">
<struct>

<param name="name">vx</param>
<param name="type">double</param>

from

<param name="value">0.0</param>
to

<param name="value">1.0</param>

Warning: There are several WallVC structs: front, back, left, right, top and bottom.
Here we have only modified the right side.

A worked example is at input/cookbook/viscous_extension.xml. Figure shows the strain rate invari-

ant and velocity (see Section [4.3.1)).

I}
AN
e
LA NN N N N i Y
N
R =
Il Y N Sw T T T Tha T Ty Ten
1 N N s Tm Ta Tha el T Tn s e =
i NN M T T Tma Tea T e S S S S == e
| % Nt e Ten Tem T s =
| N - mw e e e e o
¢ N - —- ot A e —m — s, — 5
e e e —m — o — S

Strain Rate Invariant
O.4|77 0.477 0.478 0.478

\I\‘ H\I\Iﬁ|\I\H\I\\M\\I\Hl\iﬁiiii

Figure 5.1: Strain rate invariant and velocity of viscous material in extension

o
AN
~
O

.

The structure in the strain rate invariant arises from the artificial compressibility (see Section [2.2.8.1]).
The magnitude of this structure is small, so you can ignore it for now. Later, in Section[5.11] you will remove
it by adding a HydrostaticTerm.

5.4 Viscous Material with Complex Boundaries

Another exercise is to make the bottom boundary move differently, and not just have the material slide
along. In particular, this example will simulate a box like in Figure where the bottom right side of the
box moves, but the viscous material sticks to the bottom left.

48

CHAPTER 5. COOKBOOKS

i’

Figure 5.2: Split Boundary

1. First, copy myviscous_extension.xml to myviscous_split.xml

2. Modify the bottom boundary condition of WallVC to

<struct>
<param name="type">WallVC</param>
<param name="wall">bottom</param>
<list name="variables">
<struct>
<param name="name'">vy</param>
<param name="type">double</param>
<param name="value">0.0</param>
</struct>
<struct>
<param name="name">vx</param>
<param name="type">func</param>
<param name="value">StepFunction</param>
</struct>
</list>
</struct>

This makes the velocity of the bottom boundary a step function.

3. You must also specify the parameters of the step function by adding the variables

<param name="StepFunctionLowerOffset">1.0</param>
<param name="StepFunctionUpperOffset">1.0</param>
<param name="StepFunctionValue">1.0</param>
<param name="StepFunctionDim">0</param>

<param name="StepFunctionLessThan">False</param>

to the end of the file (just before </StGermainData>).

Warning: Do not add them in the list named ‘‘variables.”

A worked example is in the file input/cookbook/viscous_split.xml. Figure [5.3] shows the strain rate
invariant and velocity (see Section . The strain rate is concentrated around the step function in the
bottom velocity boundary. Notice the development of a basin above the discontinuity. The ability to track
the development of topography on the free surfaces is one of the strengths of Gale.

5.5. VISCOUS MATERIAL WITH BOUNDARY CONDITIONS READ FROM A FILE 49

Figure 5.3: Strain rate invariant and velocity with complex boundaries

5.5 Viscous Material with Boundary Conditions Read From a File

You may want to specify custom boundary conditions that are not already implemented. For this, you can
set boundary conditions using date from a file. For this example, we will replace the sharp step function
with an smoother approximation. The data is in the file input/cookbook/velocities. To get Gale to use
it:

1. Copy myviscous_extension.xml to myviscous_file.xml

2. Modify the bottom boundary condition of WallVC to

<struct>
<param name="type">WallVC</param>
<param name="wall">bottom</param>
<list name="variables">
<struct>
<param name="name">vy</param>
<param name="type">double</param>
<param name="value">0.0</param>
</struct>
<struct>
<param name="name">vx</param>
<param name="type">func</param>
<param name="value">Filel</param>
</struct>
</list>
</struct>

3. Specify the particulars of the file by adding the variables

<param name="Filel_Name">velocities</param>
<param name="Filel_Dim">0</param>
<param name="Filel N">102</param>

to the end of the file (just before </StGermainData>).

There is a fully worked out example in input/cookbook/viscous_file.xml.

5.6 Viscous Material with Inflow/Outflow Boundaries

This example implements a different kind of boundary condition, where material flows in one side and out
another as in Figure 5.4 The current example is not intended to be geologically realistic in any sense, but
is meant to illustrate the flexibility we have in the development of complex boundary conditions.

50 CHAPTER 5. COOKBOOKS

7z //\ 77

Figure 5.4: Inflow/Outflow Boundary

1. Copy the file myviscous.xml that you created in Section to myviscous_inflow.xml.
2. Then, add the following lines after the wrapTop line so that Gale keeps the left and bottom sides fixed:

<param name="staticLeft">True</param>
<param name="staticBottom">True</param>

3. Now specify the velocity on the boundaries using the StepFunctionProduct functions. For the left
boundary, modify the left WallVC to

<param name="type">WallVC</param>
<param name="wall">left</param>
<list name="variables">
<struct>
<param name="name">vx</param>
<param name="type">func</param>
<param name="value">StepFunctionProduct3</param>
</struct>
</list>

and add the variables at the end of the file (just before </StGermainData>)

<param name="StepFunctionProduct3Start">0.1</param>
<param name="StepFunctionProduct3End">0.2</param>
<param name="StepFunctionProduct3Value">1</param>

4. For the bottom boundary, modify the bottom WallVC to

<param name="type">WallVC</param>
<param name="wall">bottom</param>
<list name="variables">
<struct>
<param name="name">vy</param>
<param name="type">func</param>
<param name="value">StepFunctionProduct2</param>
</struct>
<struct>
<param name="name">vx</param>
<param name="type">func</param>
<param name="value">StepFunctionProductl</param>
</struct>
</list>

and add the variables to the end of the file (just before </StGermainData>)

5.7. VISCOUS MATERIAL IN EXTENSION WITH NORMAL STRESS BOUNDARIES 51

<param name="StepFunctionProductlStart">0.9</param>
<param name="StepFunctionProduct1End">1.1</param>
<param name="StepFunctionProductiValue">1.0</param>
<param name="StepFunctionProduct2Start">0.9</param>
<param name="StepFunctionProduct2End">1.1</param>
<param name="StepFunctionProduct2Value">-1.0</param>

5. Finally, when Gale knows that there is an inflow condition, it is more careful when creating particles.
This slows down the code a little, so it is not enabled by default. To enable this, modify the PCDVC
struct by adding the line

<param name="Inflow">True</param>
after the lines

<struct name="weights">
<param name="Type">PCDVC</param>
<param name="resolutionX">10</param>
<param name="resolutionY">10</param>
<param name="resolutionZ">10</param>
<param name="lowerT">0.6</param>
<param name="upperT">25</param>
<param name="maxDeletions">3</param>
<param name="maxSplits">3</param>
<param name="MaterialPointsSwarm">materialSwarm</param>

A worked example is in the file input/cookbook/viscous_inflow.xml. Figure [5.5 shows the strain rate
invariant and velocity (see Section |4.3.1]).

Figure 5.5: Strain rate invariant and velocity with inflow /outflow boundaries

5.7 Viscous Material in Extension with Normal Stress Boundaries

This example modifies the extension example in Section to use a stress boundary normal to the bottom
surface, instead of specifying the velocity. A normal stress boundary condition simulates the effect of material
below the material pushing up, supporting the material in the box. Then, when material piles up, gravity
forces will overcome the stress boundary and flow out of the simulation. Conversely, if material is thinned
out, the stress boundary will push new material into the simulation. This kind of boundary is often more
relevant for geological simulations.

1. Copy my_viscous_extension.xml to my_viscous_normal_stress.xml

52

2. Remove the current bottom boundary condition by removing the lines

<struct>
<param
<param

name="type">WallVC</param>
name="wall">bottom</param>

<list name="variables">
<struct>
<param name="name">vy</param>

<param name="type">double</param>

<param name="value">0.0</param>
</struct>
</list>
</struct>

3. Add in a StressBC component

<struct name="stressBC">

<param
<param
<param
<param
<param
<param

name="Type">StressBC</param>

name="ForceVector">mom_force</param>
name="Swarm">picIntegrationPoints</param>

name="wall">bottom</param>
name="y_type">double</param>
name="y_value">0.35</param>

</struct>

CHAPTER 5. COOKBOOKS

The density of the material is 1, and the height is 0.35, so the stress needed to counteract gravity is

0.35.

4. The bottom essentially becomes an inflow/outflow boundary, so you need to prevent the bottom from
moving by adding after

<struct>
<param
<param
<param
<param

the line

<param name="staticBottom">True</param>

name="mesh">mesh-linear</param>
name="remesher">velocityRemesher</param>
name="velocityField">VelocityField</param>

name="wrapTop">True</param>

5. As in Section for an inflow condition, you need to modify the PCDVC struct by adding the line

<param name="Inflow">True</param>

after the lines

<struct name="weights">

<param
<param
<param
<param
<param
<param
<param
<param
<param

name="Type">PCDVC</param>
name="resolutionX">10</param>
name="resolutionY">10</param>
name="resolutionZ">10</param>
name="lowerT">0.6</param>
name="upperT">25</param>
name="maxDeletions">3</param>
name="maxSplits">3</param>

name="MaterialPointsSwarm">material Swarm</param>

5.8. VISCOUS MATERIAL WITH DEFORMABLE BOTTOM BOUNDARY 53

6. When you deleted the bottom boundary condition, the vertical velocity became unspecified. Recall
that the momentum equation (Equation only depends on the derivative of the velocity. So stress
boundary conditions cannot set the overall magnitude of the velocity. To fix this, you can fix the
material to the sides of the simulation. You do this by adding

<struct>
<param name="name">vy</param>
<param name="type">double</param>
<param name="value">0.0</param>
</struct>

in two places: after

<param name="type">WallVC</param>
<param name="wall">left</param>
<list name="variables">
<struct>
<param name="name">vx</param>
<param name="type">double</param>
<param name="value">0.0</param>
</struct>

and after

<param name="type">WallVC</param>
<param name="wall">right</param>
<list name="variables">
<struct>
<param name="name">vx</param>
<param name="type">double</param>
<param name="value">1.0</param>
</struct>

A worked example is at input/cookbook/viscous_normal_stress.xml. Figure [5.6] shows the strain rate
invariant and velocity (see Section |4.3.1)). Notice that material is now flowing in from the bottom.

Figure 5.6: Strain rate invariant and velocity of viscous material in extension with a normal stress boundary

5.8 Viscous Material with Deformable Bottom Boundary

The previous example can be modified so that, instead of having material flow through the bottom boundary,
the boundary itself deforms. You can do this by changing the one line

<param name="staticBottom">True</param>

54 CHAPTER 5. COOKBOOKS

to

<param name="wrapBottom">True</param>

A worked example is in input/cookbook/viscous_bottom.xml. Figure [5.7] shows the strain rate invariant
and velocity.

Figure 5.7: Strain rate invariant and velocity of viscous material with a deformable bottom boundary

5.9 Viscous Material with Initially Deformed Upper Boundary

All of the previous examples are set up as a regular rectangular box. However, Gale can also start with the
top initially deformed, such as if we had a mountain range with substantial topography. This example will
make it sinusoidal as in Figure [5.8] This example has no moving boundaries, so the material will simply
relax.

Figure 5.8: Sinusoidal Top

1. Copy myviscous.xml to myviscous_sinusoid.xml.

2. Add a SurfaceAdaptor component:

<struct name="surfaceAdaptor">

<param name="Type">SurfaceAdaptor</param>

<param name="mesh">mesh-linear</param>

<param name="sourceGenerator">linearMesh-generator</param>

<param name="topSurfaceType">sine</param>

<list name="topOrigin">

<param>0.0</param>

</list>

<param name="topAmplitude">0.1</param>

<param name="topFrequency">6.28318530718</param>
</struct>

A worked example is in input/cookbook/viscous_sinusoid.xml. Figure[5.9|shows the strain rate invariant

and velocity (see Section [4.3.1)).

5.10. VISCOUS MATERIAL WITH FIXED, DEFORMED BOTTOM BOUNDARY 55

width=2

height=.35

r_inner=3.15

r_outer=3.35

Figure 5.10: Geometry and boundary conditions for the fixed, deformed bottom boundary

= é/,, i 1{ Al .

L Lt O

=y
SN

Figure 5.9: Strain rate invariant and velocity with initially deformed upper boundary

5.10 Viscous Material with Fixed, Deformed Bottom Boundary

This example deforms the bottom boundary and keeps it fixed. We will set the left half of the boundary
to follow a circle, while the right half will still be flat. Then, the boundary condition for the velocity is
set to move the material in from the left and out through the bottom as in Figure [5.10] This is meant to
approximate one slab subducting under another.

1. Copy myviscous_inflow.xml to myviscous_deformed_bottom.xml

2. Add a SurfaceAdaptor component for the bottom boundary:

<struct name="surfaceAdaptor">

56 CHAPTER 5. COOKBOOKS

<param name="Type">SurfaceAdaptor</param>
<param name="mesh">mesh-linear</param>
<param name="sourceGenerator">linearMesh-generator</param>
<param name="bottomSurfaceType">cylinder</param>
<param name="bottomX0">SolidBodyRotationCentreX</param>
<param name="bottomY0">SolidBodyRotationCentreY</param>
<param name="bottomRadius">InnerRadiusCylinder</param>
<param name="bottomMinX">CylinderMinX</param>
<param name="bottomMaxX">CylinderMaxX</param>

</struct>

3. Replace the left boundary condition for the velocity

<struct>

<param name="type">WallVC</param>

<param name="wall">left</param>

<list name="variables">

<struct>

<param name="name">vx</param>
<param name="type">func</param>
<param name="value">StepFunctionProduct3</param>

</struct>
</list>
</struct>
with
<struct>
<param name="type">WallVC</param>
<param name="wall">left</param>
<list name="variables">
<struct>
<param name="name">vx</param>
<param name="type">func</param>
<param name="value">Velocity_PartialRotationX</param>
</struct>
<struct>
<param name="name'">vy</param>
<param name="type">func</param>
<param name="value">Velocity_PartialRotationY</param>
</struct>
</list>
</struct>

4. Replace the bottom boundary condition

<struct>
<param name="type">WallVC</param>
<param name="wall">bottom</param>
<list name="variables">
<struct>
<param name="name">vy</param>
<param name="type">func</param>
<param name="value">StepFunctionProduct2</param>
</struct>

5.10. VISCOUS MATERIAL WITH FIXED, DEFORMED BOTTOM BOUNDARY o7

<struct>
<param name="name">vx</param>
<param name="type">func</param>
<param name="value">StepFunctionProductl</param>

</struct>
</list>
</struct>
with
<struct>
<param name="type">WallVC</param>
<param name="wall">bottom</param>
<list name="variables">
<struct>
<param name="name">vx</param>
<param name="type">func</param>
<param name="value">Velocity_PartialRotationX</param>
</struct>
<struct>
<param name="name'">vy</param>
<param name="type">func</param>
<param name="value">Velocity_PartialRotationY</param>
</struct>
</list>
</struct>

5. Finally, replace the StepFunction variables

<param name="StepFunctionProduct3Start">0.1</param>
<param name="StepFunctionProduct3End">0.2</param>
<param name="StepFunctionProduct3Value">1</param>
<param name="StepFunctionProductiStart">0.9</param>
<param name="StepFunctionProductlEnd">1.1</param>
<param name="StepFunctionProductlValue">1.0</param>
<param name="StepFunctionProduct2Start">0.9</param>
<param name="StepFunctionProduct2End">1.1</param>
<param name="StepFunctionProduct2Value">-1.0</param>

with rotation variables

<param name="SolidBodyRotationOmega">-1</param>
<param name="SolidBodyRotationCentreX">0</param>
<param name="SolidBodyRotationCentreY">-3</param>
<param name="InnerRadiusCylinder">3.15</param>
<param name="CylinderMinX">0</param>

<param name="CylinderMaxX">0.960468635615</param>
<param name="RadiusCylinder">3.35</param>

A worked example is in input/cookbook/viscous deformed bottom.xml. Figure shows the strain rate in-
variant and velocity.

o8 CHAPTER 5. COOKBOOKS

-

Figure 5.11: Strain rate invariant and velocity for a deformed bottom boundary

5.11 Hydrostatic Term

This example will add a HydrostaticTerm to the simple extension model (Section [5.3) to improve its accu-
racy. So first copy myviscous_extension.xml to myhydrostatic.xml. Then add a HydrostaticTerm and
StressBC just before the BuoyancyForceTerm

<struct name="hydrostaticTerm">
<param name="Type">HydrostaticTerm</param>
<param name="upperDensity">1</param>
<param name="height">maxY</param>
<param name="gravity">gravity</param>
</struct>
<struct name="stressBC">
<param name="Type">StressBC</param>
<param name="ForceVector">mom_force</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="wall">top</param>
<param name="y_type">HydrostaticTerm</param>
<param name="y_value">hydrostaticTerm</param>
</struct>

Then, in the BuoyancyForceTerm, add an entry for HydrostaticTerm so that the BuoyancyForceTerm now
looks like

<struct name="buoyancyForceTerm">
<param name="Type">BuoyancyForceTerm</param>
<param name="ForceVector">mom_force</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="gravity">gravity</param>
<param name="HydrostaticTerm">hydrostaticTerm</param>
</struct>

Figure[5.12]shows the strain rate invariant with the same color scale as Figure[5.1} With the HydrostaticTerm,
the artifacts seen at the top and bottom in Figure [5.1] disappear.
A worked example is in input/cookbook/hydrostatic.xml.

5.12 Multiple Viscous Materials

All of the previous examples have only one type of viscous material. This example will create a simulation
where there are multiple viscous materials such as in Figure [5.13

1. Copy myviscous_extension.xml (see Section |5.3]) to mymulti_material.xml.

5.12. MULTIPLE VISCOUS MATERIALS 99

Py ow s
A T R i
N Sy
L N N N R i Y
Pl NS ETs =
] N NN T e Tha Tha T T e s g = = e
i NN M T Tha Tha Tha T e o S Bn
1 S AR e e e e e s e e
4 \ ~ e e T Tha T T Tt o g
b N a o T e e M=
I ~ T e
¢ -~ . e e e ——m e g
-~ o~ e e s s &

Strain Rate Invariant
0476 0.477 0.477 0.478 0.478

HH|\HH\I\'I‘HH\IH'\‘HI\IH \|H

Figure 5.12: Strain rate invariant for an extension model with the hydrostatic pressure subtracted out.

|

Figure 5.13: Multiple Viscous Materials

2. Add the sphere.

<struct name="sphereShape">
<param name="Type">Sphere</param>
<param name="CentreX">1.0</param>
<param name="CentreY">0.15</param>
<param name="radius">0.10</param>
</struct>

Note: If run in 3D, this is a sphere. The example shown here is run in 2D, so the result is a circle.

3. Then add the new material.

<struct name="sphereViscosity">
<param name="Type">MaterialViscosity</param>
<param name="eta0">10.0</param>
</struct>
<struct name="sphereViscous">
<param name="Type">RheologyMaterial</param>
<param name="Shape">sphereShape</param>
<param name="density">1.0</param>
<list name="Rheology">
<param>sphereViscosity</param>
<param>storeViscosity</param>
<param>storeStress</param>
</list>
</struct>

4. Change the shape of the original material so it is not inside the sphere. To do this, create a new shape
which is the old shape minus the sphere:

<struct name="nonSphereShape">
<param name="Type">Intersection</param>
<list name="shapes">

60 CHAPTER 5. COOKBOOKS

<param>boxShape</param>
<param>!sphereShape</param>
</list>
</struct>

5. Finally, modify the original viscous material to use this new nonSphereShape by changing the line
after

<struct name="viscous">
<param name="Type">RheologyMaterial</param>

from
<param name="Shape">boxShape</param>
to
<param name="Shape">nonSphereShape</param>

A worked example is in input/cookbook/multi_material.xml. Figure shows the strain rate invariant

and velocity (see Section [4.3.1)),

Figure 5.14: Strain rate invariant and velocity with multiple viscous materials

and Figure shows the viscosity of the particles.

Figure 5.15: Viscosities with multiple viscous materials

5.13 Yielding Material in Simple Extension

This example replaces the background viscous material with a yielding material. This will produce localiza-
tions as some material fails.

1. Copy mymulti_material.xml to myyielding.xml

2. Add a StrainWeakening component and a DruckerPrager component

5.13. YIELDING MATERIAL IN SIMPLE EXTENSION 61

<struct name="strainWeakening">
<param name="Type">StrainWeakening</param>
<param name="TimeIntegrator">timeIntegrator</param>
<param name="MaterialPointsSwarm">materialSwarm</param>
<param name="softeningStrain">0.1</param>
<param name="initialDamageFraction">0.0</param>
<param name="initialDamageWavenumber">0.5</param>
<param name="initialDamageFactor">0.5</param>
<param name="healingRate">0.0</param>
</struct>
<struct name="yielding">
<param name="Type">DruckerPrager</param>
<param name="PressureField">PressureField</param>
<param name="VelocityGradientsField">VelocityGradientsField</param>
<param name="MaterialPointsSwarm">materialSwarm</param>
<param name="Context">context</param>
<param name="StrainWeakening">strainWeakening</param>
<param name="cohesion">1.0</param>
<param name="cohesionAfterSoftening">0.0001</param>
<param name="frictionCoefficient">0.0</param>
<param name="frictionCoefficientAfterSoftening">0.0</param>
</struct>

3. Finally, remove the existing viscous RheologyMaterial

<struct name="viscous">
<param name="Type">RheologyMaterial</param>
<param name="Shape">nonSphereShape</param>
<param name="density">1.0</param>
<list name="Rheology">
<param>backgroundViscosity</param>
<param>storeViscosity</param>
<param>storeStress</param>
</list>
</struct>

and replace it with a yielding RheologyMaterial

<struct name="crust">
<param name="Type">RheologyMaterial</param>
<param name="Shape">nonSphereShape</param>
<list name="Rheology">
<param>backgroundViscosity</param>
<param>yielding</param>
<param>storeViscosity</param>
<param>storeStress</param>
</list>
</struct>

A worked example is in input/cookbook/yielding.xml. Figure shows the strain rate invariant and

velocity (see Section [4.3.1)).

62 CHAPTER 5. COOKBOOKS

Figure 5.16: Strain rate invariant and velocity of yielding material in extension

Figure [5.17] shows the viscosity of the particles,

Figure 5.17: Viscosity of yielding material in extension

and Figure [5.1§ shows the accumulated post-yielding strain of the particles.

Figure 5.18: Accumulated post-yielding strain of yielding material in extension

5.14 Thermal Convection

Temperature can play a decisive role in geophysical processes. This example takes the multiple viscous
material example from Section [5.12] heats it on the bottom, and adds in radiogenic heating throughout.

1. Copy mymulti_material.xml to mythermal.xml
2. Add in the thermal components from Section

3. Add in temperature boundary conditions after the velocity boundary conditions

5.14. THERMAL CONVECTION 63

<struct name="temperatureBCs">
<param name="type">CompositeVC</param>
<list name="vcList">
<struct>
<param name="type">WallVC</param>
<param name="wall">bottom</param>
<list name="variables">
<struct>
<param name="name">temperature</param>
<param name="type">double</param>
<param name="value">2.0</param>
</struct>
</list>
</struct>
<struct>
<param name="type">WallVC</param>
<param name="wall">left</param>
<list name="variables">
<struct>
<param name="name">temperature</param>
<param name="type">double</param>
<param name="value">1.0</param>
</struct>
</list>
</struct>
<struct>
<param name="type">WallVC</param>
<param name="wall">right</param>
<list name="variables">
<struct>
<param name="name">temperature</param>
<param name="type">double</param>
<param name="value">1.0</param>
</struct>
</list>
</struct>
<struct>
<param name="type">WallVC</param>
<param name="wall">top</param>
<list name="variables">
<struct>
<param name="name">temperature</param>
<param name="type">double</param>
<param name="value">1.0</param>
</struct>
</list>
</struct>
<struct>
<param name="type">WallVC</param>
<param name="wall">front</param>
<list name="variables">
<struct>
<param name="name">temperature</param>
<param name="type">double</param>

64 CHAPTER 5. COOKBOOKS

<param name="value">1.0</param>
</struct>
</list>
</struct>
<struct>
<param name="type">WallVC</param>
<param name="wall">back</param>
<list name="variables">
<struct>
<param name="name">temperature</param>
<param name="type">double</param>
<param name="value">1.0</param>
</struct>
</list>
</struct>
</list>
</struct>

4. Add in initial conditions for the temperature after the boundary conditions

<struct name="temperatureICs">
<param name="type">CompositeVC</param>
<list name="vcList">
<struct>
<param name="type">Al1lNodesVC</param>
<list name="variables">
<struct>
<param name="name">temperature</param>
<param name="type">double</param>
<param name="value">1.0</param>
</struct>
</list>
</struct>
</list>
</struct>

5. Specify the background material’s thermal expansivity, thermal diffusivity, radiogenic heating rate,
and radiogenic decay time scale by adding after

<struct name="viscous">
<param name="Type">RheologyMaterial</param>
<param name="Shape">boxShape</param>
<param name="density">1.0</param>

the lines

<param name="alpha">1.0</param>
<param name="diffusivity">1.0</param>
<list name="heatingElements">
<struct>
<param name="Q">1.0</param>
<param name="lambda">1.0</param>
</struct>
</list>

For the sphere, after the lines

5.14. THERMAL CONVECTION 65

<struct name="sphereViscous">
<param name="Type">RheologyMaterial</param>
<param name="Shape">sphereShape</param>
<param name="density">1.0</param>

add the lines

<param name="alpha">10.0</param>
<param name="diffusivity">10.0</param>
<list name="heatingElements">
<struct>
<param name="Q">1000.0</param>
<param name="lambda">10.0</param>
</struct>
</list>

This makes the sphere more expansive, conductive, and radioactive.
6. Modify the buoyancy force term by adding the temperature field after

<struct name="buoyancyForceTerm">
<param name="Type">BuoyancyForceTerm</param>
<param name="ForceVector">mom_force</param>

with the line
<param name="TemperatureField">TemperatureField</param>

7. Finally, to highlight the effects of temperature, make the boundary move more slowly by changing the
line after

<param name="type">WallVC</param>
<param name="wall">right</param>
<list name="variables">
<struct>
<param name="name">vx</param>
<param name="type">double</param>

from

<param name="value">1.0</param>
to

<param name="value">0.01</param>

A worked example is in thermal.xml. Figure [5.19|shows the temperature and velocity.

Figure 5.19: Temperature and velocity for the thermal convection example

66 CHAPTER 5. COOKBOOKS

I
i

W

\
b

===

)

i

t

i
A

Figure 5.20: Temperature and velocity for the power-law creep model

5.15 Power Law Creep

A common approximation for the rheology of rocks is power law creep. This example shows how to implement
this with the NonNewtonian rheology as described in Section

1. Copy mythermal.xml to mynon_newtonian.xml.

2. Add the NonNewtonian rheology after NonSphereShape

<struct name="nonNewtonian">
<param name="Type">NonNewtonian</param>
<param name="StrainRateInvariantField">StrainRatelInvariantField</param>
<param name="n">3.4</param>
<param name="T_0">1.0</param>
<param name="A">1.0</param>
<param name="refStrainRate">0.01</param>
</struct>

3. Change

<list name="Rheology">
<param>backgroundViscosity</param>
<param>storeViscosity</param>
<param>storeStress</param>

</list>

to

<list name="Rheology">
<param>nonNewtonian</param>
<param>storeViscosity</param>
<param>storeStress</param>
</list>

A worked example is in non_newtonian.xml. Figure shows the temperature and velocity. The differences
with the example in Figure [5.19] are mostly because the viscosity is higher everywhere.

Chapter 6

(Geologic Example

The previous chapter gave examples on how to make simple problems with simple parameters (e.g., length=1,
viscosity=1). Scaling these input parameters to realistic values (e.g., length=1000km, viscosity=10%¢) should
be as easy as changing the various parameters to the right number. In practice, it can be quite difficult,
because you may have to change many different parameters at once to ensure a stable solution. To make
that transition easier, there is a sample input file in input/examples/dike.xml which has a rough model of
a magmatic dike [I9]. A schematic of the simulation is shown in Figure

67

68 CHAPTER 6. GEOLOGIC EXAMPLE

air initially damaged region

dike

Figure 6.1: Schematic of dike example

The right and left sides are pulled at a constant rate. The region that is modeled is fixed, so material flows
in from the bottom and out through the sides. The top layer is a low viscosity ’air’ layer that flows in and
out of the simulation as time progresses. The dike region is a region of constant divergence, so material is
created there ab mihilo. This is to model a magma chamber that is fed from small channels from far away.

There is also a nonlinear temperature gradient, going from 273° K at the surface to 1473° K at the
bottom. The dike is set to 1500° K. The temperature is fixed to the background and does not advect.

The mantle is modeled with a temperature and strain dependent non-newtonian viscosity and a Drucker-
Prager plasticity.

Figure [6.2] shows the integrated strain of a model after 100 steps. The resolution is 120x 36, and we used
a direct solver on a laptop. There are three prominent faults which propagate out from the dike region.

69

Post_Failure_Strain
0.5

0

Figure 6.2: Integrated strain for the dike model

70

CHAPTER 6. GEOLOGIC EXAMPLE

Chapter 7

Modifying Gale

7.1 Introduction

If you wish to change material properties, here is a brief overview of how to modify the code. The following
is currently lacking in many areas, but will be expanded and refined in future releases.

7.2 Software Components of Gale

Gale makes use of several physics libraries, including StGermain, StgFEM, PiCellerator, and UnderWorld.
These are open-source finite element method libraries written by the Victorian Partnership for Advanced
Computing (VPAC) and Louis Moresi’s group at Monash University (see Fig . Gale also makes use of
PETSc, a suite of data structures and routines for the parallel solution of scientific applications modeled by
partial differential equations.

7.2.1 StGermain

StGermain (csd.vpac.org/twiki/bin/view/Stgermain/WebHome) provides an infrastructure that can be
used to create reusable, collaborative computational development environments. It aims to provide the
efficiency and style of coding near that of traditional HPC as well as new techniques and methods in scientific
computing. Effectively, it is the application of contemporary software engineering on multi-disciplinary
computational research. In particular, StGermain can be used in the development of computational finite
element codes. It permits the interchanging of numerical schemes without having to change the problem
description or the constitutive rules utilized. It also allows numerical schemes and constitutive rules to
be reused for different problems in different disciplines. Scientists can then switch to new computational
technologies as they become available. StGermain also capitalizes on the resources invested in software
development on a research project, rendering that software effectively reusable for subsequent projects. In
turn, intellectual property, skills and adaptability of the recipients develop over time.

7.2.2 PETSc

PETSc (www-unix.mcs.anl.gov/petsc/petsc-as), the Portable, Extensible Toolkit for Scientific Compu-
tation, is a suite of data structures and routines for the uni- and parallel-processor solution of large-scale
scientific application problems modeled by partial differential equations. It employs the MPI standard for
all message-passing communication.

71

csd.vpac.org/twiki/bin/view/Stgermain/WebHome
www-unix.mcs.anl.gov/petsc/petsc-as

72 CHAPTER 7. MODIFYING GALE

Figure 7.1: Mapping between MicroFEM and Gale

Use the rheology of Underworld

Use the PIC integration scheme of PlCellerator to solve

the finite element problem

(a) Provide topography surface and plugin interface
for surface processes

(b) Deforr!l
Eulerian
domain

(c) Compute
and apply
Isoitasy

Included
in (b)

(d) Implement level
set to topography
surface operation The GALE software stack

7.2.3 StgFEM

StgFEM (csd.vpac.org/twiki/bin/view/Stgfem/WebHome|) uses the StGermain philosophy of reusability
and collaborative development to create a finite element problem composer in terms of both the linear
system to be solved and the finite element discretization of the problem domain. The composition can
be described in XML and could be represented in a network diagram with an appropriate tool. StgFEM

csd.vpac.org/twiki/bin/view/Stgfem/WebHome

7.3. SYSTEM DESCRIPTION 73

describes finite element systems for various formulations in a manner that can allow the underlying numerics
to be interchanged.

7.2.4 PiCellerator

PICellerator (csd.vpac.org/twiki/bin/view/PICellerator/WebHome) (Particle In Cellerator), a Lagrangian
Integration Point Finite Element framework, is implemented as an integration scheme substitute for the de-
fault Gaussian scheme implemented in StgFEM. The PICellerator concept has since grown to become a
general Lagrangian integration scheme framework and a Lagrangian constitutive rule framework. The PIC
scheme is provided and other Arbitrary Lagrangian Eulerian schemes are in development. Constitutive rules
are reusable across these schemes.

7.2.5 UnderWorld

UnderWorld (wasabi.maths.monash.edu.au/twiki/view/Software/Underworld) is a StGermain parallel
modeling framework Geoscience research code which utilizes a Lagrangian particle-in-cell finite element
scheme (the prototype of which is the Ellipsis code), visualized using gLucifer. UnderWorld (Monash Uni-
versity), StGermain (Victorian Partnership for Advanced Computing or VPAC) and gLucifer (Monash Uni-
versity) are under development as part of the Australian Computational Earth Systems Simulator (ACcESS),
an Australian Government National Research Facility, a node of which is located at the Australian Crustal
Research Centre (ACRC) at Monash University (Clayton Campus).

7.3 System Description

Gale uses StgFEM to formulate implicit finite element systems, with the bulk of the information placed in
a stiffness matrix and a force vector. Depending on the type of solver used, there may be several matrices
and vectors. The stiffness matrix class has a member whose purpose is to assemble the entire matrix. It
does this through the use of “stiffness matrix terms.” The StiffnessMatrixTerm class provides an interface
through which the elemental contributions to the matrix may be influenced. In typical fluid flow systems, the
majority of the physics is applied to the model through constitutive laws which modify the stiffness matrix
to reflect certain physical situations. The ConstitutiveMatrix class inherits from StiffnessMatrixTerm,
providing an interface tailored to implementing material-based continuum physics.

So, where does the actual physics take place? The answer is in the Rheology class, but first look at the
PIC (particle-in-cell) scheme. There are a number of benefits to using a PIC scheme, but the main use is
to store material properties on each particle. These properties can then be used to drive our constitutive
laws, in turn modifying the produced stiffness matrices. For each defined material in the domain, there may
be a number of associated rheological laws. Whenever an element in the system is assembled, each stiffness
matrix term is evaluated, implying that the constitutive matrix will be evaluated for each element. For each
particle internal to an element, the ConstitutiveMatrix class will evaluate all associated rheologies, each
rheology modifying the constitutive matrix.

Modifying the constitutive matrix takes place in the form of viscosity values. In this, probably the
simplest of rheological laws, the ModifyConstitutiveMatrix method simply sets a specific viscosity value
for the current element/material point tuple.

7.4 Sample Rheologies

7.4.1 Simple Viscous

This excerpt is taken from the file src/Underworld/Rheology/src/MaterialViscosity.c. It has been
inherited from the Rheology class and thus possesses a virtual method named

MaterialViscosity_ModifyConstitutiveMatrix

which has been overridden to set the viscosity in the constitutive matrix, as follows:

csd.vpac.org/twiki/bin/view/PICellerator/WebHome
wasabi.maths.monash.edu.au/twiki/view/Software/Underworld

74 CHAPTER 7. MODIFYING GALE

void _MaterialViscosity_ModifyConstitutiveMatrix(
void* rheology,
ConstitutiveMatrix* constitutiveMatrix,
MaterialPointsSwarm* swarm,
Element_Locallndex 1Element_1I,

MaterialPoint* materialPoint,
Coord xi)
{
MaterialViscosity* self = (MaterialViscosity#*)rheology;
ConstitutiveMatrix_SetIsotropicViscosity(constitutiveMatrix,
self->etal);
b

The parameters passed to this method provide access to the rheology class’s members/methods, the consti-
tutive matrix, the swarm (material points), the index of the element currently being assembled, the material
point currently being evaluated, and the material point’s elemental coordinates.

7.5 Standard Condition Functions

If you need to write your own Standard Condition Functions (see Section , then the easiest way is to
copy and paste an existing function. For example, suppose you wanted to create a function xSquared that
returns Az?, where A is a constant provided in the input file. You start by opening the file

src/StgFEM/plugins/StandardConditionFunctions/StandardConditionFunctions.c
and finding the function
StgFEM_StandardConditionFunctions_Extension
Make a copy of that function and rename it to
StgFEM_StandardConditionFunctions_xSquared

Then you only need to modify the last 6 lines of the function to get the desired behavior. Specifically, it will
become

void StgFEM_StandardConditionFunctions_xSquared(Node_LocalIndex node_l1I,
Variable_Index var_I,
void* _context, void* _result) {

DiscretisationContext* context = (DiscretisationContext*)_context;
Dictionary* dictionary = context->dictionary;

FeVariablex* feVariable = NULL;

FeMeshx* mesh = NULL;

doublex* result = (double*) _result;

doublex* coord;

double factor;

feVariable = (FeVariablex)FieldVariable_Register_GetByName (
context->fieldVariable_Register, "VelocityField");

mesh feVariable->feMesh;

/* Find Centre of Solid Body Rotation */

factor = Dictionary_GetDouble_WithDefault(dictionary, "xSquaredFactor", 1.0);

/* Find coordinate of node */

coord = Mesh_GetVertex(mesh, node_1I);

*result = factor * (coord[I_AXIS]*coord[I_AXIS 1;

7.5. STANDARD CONDITION FUNCTIONS (0]

Then you need to register your function at the top of the file. After the lines

condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_Extension,
"Velocity_Extension");
ConditionFunction_Register_Add(context->condFunc_Register, condFunc);

add the lines

condFunc = ConditionFunction_New(StgFEM_StandardConditionFunctions_xSquared, "xSquared");
ConditionFunction_Register_Add(context->condFunc_Register, condFunc)
The last thing to do is to modify

src/StgFEM/plugins/StandardConditionFunctions/StandardConditionFunctions.h

After the line

void StgFEM_StandardConditionFunctions_Extension(Node_LocalIndex node_1I, Variable_Index var_I,
void* _context, void* _result) ;

add the line

void StgFEM_StandardConditionFunctions_xSquared(Node_Locallndex node_lI, Variable_Index var_I,
void* _context, void* _result) ;

Now recompile the code, and you should be able to use your new function from input files.

76

CHAPTER 7. MODIFYING GALE

Appendix A

Input File Format

A.1 Structure

The input files are XML files. This leverages a well-known format to specify concepts like hierarchies, lists,
parameters, and arbitrary structures. The entire document is placed withing a StGermainData structure.

<?xml version="1.0"7>
<StGermainData xmlns="http://www.vpac.org/StGermain/XML_I0_Handler/Jun2003">

</StGermainData>

Within that structure, there are five main parts of every Gale input file: the components, the plugins,
EulerDeform, Velocity Conditions, and the variables.

A.1.1 Components

The components section is separated off from the rest of the file with an enclosing components structure.
This components structure is where the bulk of the file will be. It specifies things like what the mesh will be
like, which material goes where, what the material properties are, what kind of solver to use, etc. Most of
the ideas you need to specify your problem will go into the components. When adding a new component, it
is important to remember to put the new component inside the components structure. Otherwise Gale will
(silently) not use that component. For example, an input file such as

<struct name="components">
<struct name="conditionFunctions">
<param name="Type">StgFEM_StandardConditionFunctions</param>
</struct>
</struct>

will correctly initialize StgFEM_StandardConditionFunctions, but the input file

<struct name="components">
</struct>
<struct name="conditionFunctions">
<param name="Type">StgFEM_StandardConditionFunctions</param>
</struct>

will not, and no error message will alert you of the problem.

7

78 APPENDIX A. INPUT FILE FORMAT

A.1.2 Plugins

Gale nominally has the ability to load modules during runtime. Dynamically loading modules is, in general,
difficult to get working on multiple platforms. To simplify things, Gale compiles a number of plugins into
the code:

StgFEM_FrequentQOutput

StgFEM_CPUTime
Underworld_MovingMesh
Underworld_Vrms
Underworld_EulerDeform
StgFEM_PrintFeVariableDiscreteValues
Underworld_VTKOutput

To use these plugins, list them in a plugins section outside of the components structure. For example, the
following lines will enable the EulerDeform and VTKOutput plugins

<list name="plugins">
<param>Underworld_EulerDeform</param>
<param>Underworld_VTKOutput</param>
</list>

You can add additional plugins by modifying the list of static plugins in src/Gale/src/main.c and making
sure that the plugin is compiled into the Gale executable.

A.1.2.1 EulerDeform

The Underworld_EulerDeform plugin allows the upper surface to move freely or stay rigidly in place. An
example EulerDeform struct is

<struct name="EulerDeform">
<list name="systems">
<struct>
<param name="mesh">mesh-linear</param>
<param name="remesher">velocityRemesher</param>
<param name="velocityField">VelocityField</param>
<param name="wrapTop">True</param>
<list name="fields">
<struct>
<param name="field">VelocityField</param>
<param name="variable">velocity</param>
</struct>
<struct>
<param name="field">PressureField</param>
<param name="variable'">pressure</param>
</struct>
</list>
</struct>
</list>
</struct>

This commands Gale to interpolate both the pressure and velocity field onto the new mesh. This interpolation
can sometimes go awry. Often, this is because something else is going wrong. For example, if your velocity
solution is bad and you get large velocities, then the mesh can turn itself inside out. This, in turn, will
cause EulerDeform to fail. If you are getting spurious problems with interpolation, then you can turn off
this interpolation by removing these two fields from EulerDeform. It may slightly affect the speed of your
solution, since Gale uses those pressure and velocity fields as a starting guess for the next time step.

Note the critical line

A.1. STRUCTURE 79

<param name="wrapTop">True</param>

that makes the top surface conform to the simulation.

Additionally, Gale can fix the positions of the boundaries. For example, if you are running a shortening
model, normally Gale will move the boundaries inward as the simulation progresses. If different parts of the
boundary are moving at different rates (such as if you were simulating one slab sliding over the other), then
the side boundary would quickly become distorted and ruin the simulation. To fix the right boundary, set
the variable staticRight to True

<param name="staticRight">True</param>

Similarly, you can independently set the left, top, bottom, front, and back boundaries.

Note that this will only fix the interior of that boundary. So setting staticRight will not fix the top
right or bottom right corners (in 2D) and edges (in 3D). If you set both staticRight and staticBottom,
then the bottom right corner will also be fixed. Otherwise, you can set staticBottomRight to specifically
fix the bottom right corner.

If you set staticRight or staticLeft but do not fix the upper corners, then Gale will move the top
right or left corner to the boundary and interpolate the height. This is useful if material is flowing out and
you want the boundary of the mesh to vary as lumps go through. If material is actually flowing in, Gale will
be unable to interpolate and will complain.

The floatRightTop and floatLeftTop variables are useful when you are using a boundary layer (see
Sections , and you want the height of the boundary layer to match the interior.

Also note that you must include Underworld_EulerDeform in the list of plugins (see Section in
order for this section to have any effect.

80

APPENDIX A. INPUT FILE FORMAT

Defaults ‘
velocityField -
wrapTop False
wrapLeft False
wrapRight False
staticRight False
staticRightTop False
staticRightBottom False
staticRightFront False
staticRightBack False
staticRight TopFront False
staticRight TopBack False
staticRightBottomFront | False
staticRightBottomBack | False
staticLeft False
staticLeft Top False
staticLeft Bottom False
staticLeftFront False
staticLeftBack False
staticLeft TopFront False
staticLeft TopBack False
staticLeftBottomFront | False
staticLeftBottomBack | False
staticTop False
staticTopFront False
staticTopBack False
staticBottom False
staticBottomFront False
staticBottomBack False
staticFront False
staticBack False
floatLeft Top False
floatRightTop False
xRightCoord -
xLeftCoord -

A.1.3 Initial and Boundary Conditions

These sections specify the boundary conditions on the velocity, and the initial and boundary conditions for

the temperature. See Sections and for more details.

A.1.4 Variables

The last section is where most of our numeric constants are placed. For example, how many time steps, how
often to print output, etc. You may also declare variables for convenience (e.g., the number of grid points)
and use it elsewhere, such as in the components. If you are using the basic set of components, then the more

important parameters are:

maxTimeSteps The number of time steps to take in the simulation. Each time step can cover a different

amount of time. Gale determines how big of a step to take by dividing the grid size by the largest
velocity during that time step. Unfortunately, there is no way to stop at a maximum time.

dumpEvery How often to write VTK output (see Section [B.I]).

checkPointEvery How often to write the checkpoint files (see Section [B.2]).

A.2. BASIC COMPONENTS 81

outputPath The directory to put output files in. Due to quirks in MPI, you may need to specify this as a
full path (e.g., /home/juser/simulations/myoutput) rather than a relative path (myoutput).

dim The number of dimensions of the problem (2 or 3).

minX,minY,minZ,maxX,maxY ,maxZ The physical size of the box you are simulating. Note that this
may be modified by SurfaceAdaptor (Section [A.6.5)).

elementResl,elementResJ,elementResK The number of elements in each direction. Note that the
number of grid points is one larger (e.g., 64 elements = 65 grid points).

shadowDepth When running in parallel, every parameter only computes quantities over a portion of the
grid. To do this, each processor must keep copies of points that belong to other processors. This
parameter specifies how wide the region of copied points is. You should never need to change this from
1.

gaussParticlesX,gaussParticlesY ,gaussParticlesZ The number of particles in each direction when putting
down particles using a Gaussian distribution. This is used when mapping quantities from the particles
to the grid. You should never need to change this number.

particlesPerCell The ideal number of particles in each element. Gale will attempt to keep the number of
particles in each element close to this number. You need to vary this number to gauge how sensitive
the results of our simulation are to this number.

dtFactor A factor to scale the time step. Ordinarily, Gale will automatically choose an appropriate step
size to ensure a stable solution. If you find that to be too large of a step size, you can change dtFactor
to a smaller number. The default is 1 (no scaling).

dt The size of the time step. Ordinarily, Gale will automatically choose an appropriate step size to ensure a
stable solution. For some purposes, it may be convenient to explicitly specify the time step. Be careful!
The time step will then be constant over the entire simulation. If the grid stretches and/or velocities
become larger than you expect, you may end up with an unstable simulation. The default is 0, which
means to use dynamic time stepping.

defaultDiffusivity This is the default diffusivity for all materials. It also indirectly sets the time step. See
Section [A 3]

maxTimeStepSize The maximum size of the time step. This limit is applied after dtFactor and dt.

seed A random number seed used when placing new particles. You should never need to change this variable,
since changing it should not affect the simulation.

A.2 Basic Components

Gale is built on top of StGermain, which is a very general framework for scientific computation. Because
StGermain is so general, you have to tell it fairly basic things that would be implicit in most codes. For
example, you must tell StGermain that you want to set up a regular mesh and solve a finite element problem
on it. This means you have to include a number of components in every input file. These components are

<struct name="mesh-linear">
<param name="Type">FeMesh</param>
<param name="elementType">linear</param>
</struct>
<struct name="linearMesh-generator">
<param name="Type">CartesianGenerator</param>
<param name="mesh">mesh-linear</param>
<param name="dim">dim</param>
<param name="shadowDepth">shadowDepth</param>

82

APPENDIX A.

<list name="size">
<param>elementResI</param>
<param>elementResJ</param>
<param>elementResK</param>
</list>
<list name="minCoord">
<param>minX</param>
<param>minY</param>
<param>minZ</param>
</list>
<list name="maxCoord">
<param>maxX</param>
<param>maxY</param>
<param>maxZ</param>
</list>
</struct>
<struct name="velocity">
<param name="Type">MeshVariable</param>
<param name="mesh">mesh-linear</param>
<param name="Rank">Vector</param>
<param name="DataType">Double</param>
<param name="VectorComponentCount">dim</param>
<list name="names">
<param>vx</param>
<param>vy</param>
<param>vz</param>
</list>
</struct>
<struct name="velocityBCs">
<param name="Type">CompositeVC</param>
<param name="Data'">mesh-linear</param>
</struct>
<struct name="velocityICs">
<param name="Type">CompositeVC</param>
<param name="Data'">mesh-linear</param>
</struct>
<struct name="velocityDofLayout">
<param name="Type">DofLayout</param>
<param name="mesh">mesh-linear</param>
<param name="BaseVariableCount">dim</param>
<list name="BaseVariables">
<param>vx</param>
<param>vy</param>
<param>vz</param>
</list>
</struct>
<struct name="VelocityField">
<param name="Type">FeVariable</param>
<param name="FEMesh">mesh-linear</param>
<param name="DofLayout">velocityDofLayout</param>
<param name="BC">velocityBCs</param>
<param name="IC">velocityICs</param>
<param name="LinkedDofInfo">velocityLinkedDofs</param>
</struct>

INPUT FILE FORMAT

A2

BASIC COMPONENTS

<struct name="VelocityMagnitudeField">
<param name="Type">OperatorFeVariable</param>
<param name="QOperator">Magnitude</param>
<param name="FeVariable">VelocityField</param>
</struct>
<struct name="VelocityGradientsField">
<param name="Type">0OperatorFeVariable</param>
<param name="Operator">Gradient</param>
<param name="FeVariable">VelocityField</param>
</struct>
<struct name="VelocityGradientsInvariantField">
<param name="Type">0OperatorFeVariable</param>
<param name="Operator">TensorInvariant</param>
<param name="FeVariable">VelocityGradientsField</param>
</struct>
<struct name="VelocityXXField">
<param name="Type">0OperatorFeVariable</param>
<param name="Operator">TakeFirstComponent</param>
<param name="FeVariable">VelocityField</param>
</struct>
<struct name="VelocityYYField">
<param name="Type">0OperatorFeVariable</param>
<param name="QOperator">TakeSecondComponent</param>
<param name="FeVariable">VelocityField</param>
</struct>
<struct name="StrainRateField">
<param name="Type">0peratorFeVariable</param>
<param name="QOperator">TensorSymmetricPart</param>
<param name="FeVariable">VelocityGradientsField</param>
</struct>
<struct name="VorticityField">
<param name="Type">0OperatorFeVariable</param>
<param name="Operator">TensorAntisymmetricPart</param>
<param name="FeVariable">VelocityGradientsField</param>
</struct>
<struct name="StrainRateInvariantField">
<param name="Type">0OperatorFeVariable</param>
<param name="Operator">SymmetricTensor_Invariant</param>
<param name="FeVariable">StrainRateField</param>
</struct>
<struct name="pressure">
<param name="Type">MeshVariable</param>
<param name="mesh">mesh-linear</param>
<param name="Rank">Scalar</param>
<param name="DataType">Double</param>
</struct>
<struct name="pressureDofLayout">
<param name="Type">DofLayout</param>
<param name="mesh">mesh-linear</param>
<list name="BaseVariables">
<param>pressure</param>
</list>
</struct>
<struct name="PressureField">

83

84

APPENDIX A.

<param name="Type">FeVariable</param>
<param name="FEMesh">mesh-linear</param>
<param name="DofLayout">pressureDofLayout</param>
<param name="LinkedDofInfo">pressureLinkedDofs</param>
</struct>
<struct name="StressField">
<param name="Type">StressField</param>
<param name="StrainRateField">StrainRateField</param>
<param name="Context">context</param>
<param name="ConstitutiveMatrix">constitutiveMatrix</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="Mesh">mesh-linear</param>
<param name="IC">stressICs</param>
</struct>
<struct name="ViscosityField">
<param name="Type">ViscosityField</param>
<param name="Context">context</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="Mesh">mesh-linear</param>
<param name="ConstitutiveMatrix">constitutiveMatrix</param>
</struct>
<struct name="cellLayout">
<param name="Type">SingleCellLayout</param>
</struct>
<struct name="particleLayout">
<param name="Type">GaussParticleLayout</param>
</struct>
<struct name="gaussSwarm">
<param name="Type">IntegrationPointsSwarm</param>
<param name="CellLayout">cellLayout</param>
<param name="ParticleLayout">particlelLayout</param>
<param name="FeMesh">mesh-linear</param>
<param name="TimeIntegrator">timeIntegrator</param>
<param name="IntegrationPointMapper">gaussMapper</param>
</struct>
<struct name="gaussMapper">
<param name="Type">GaussMapper</param>
<param name="IntegrationPointsSwarm">gaussSwarm</param>
<param name="MaterialPointsSwarm">gaussMaterialSwarm</param>
</struct>
<struct name="backgroundLayout">
<param name="Type">BackgroundParticlelLayout</param>
</struct>
<struct name="gaussMaterialSwarm">
<param name="Type">MaterialPointsSwarm</param>
<param name="CellLayout">cellLayout</param>
<param name="ParticleLayout">backgroundLayout</param>
<param name="FeMesh">mesh-linear</param>
</struct>
<struct name="timeIntegrator">
<param name="Type">TimeIntegrator</param>
<param name="order">1</param>
<param name="simultaneous">t</param>
<param name="Context">context</param>

INPUT FILE FORMAT

A2

BASIC COMPONENTS

</struct>
<struct name="elementCellLayout">
<param name="Type">ElementCellLayout</param>
<param name="Mesh">mesh-linear</param>
</struct>
<struct name="weights">
<param name="Type">PCDVC</param>
<param name="resolutionX">10</param>
<param name="resolutionY">10</param>
<param name="resolutionZ">10</param>
<param name="lowerT">0.6</param>
<param name="upperT">25</param>
<param name="maxDeletions">3</param>
<param name="maxSplits">3</param>
<param name="MaterialPointsSwarm">materialSwarm</param>
</struct>
<struct name="localLayout">
<param name="Type">MappedParticlelLayout</param>
</struct>
<struct name="picIntegrationPoints">
<param name="Type">IntegrationPointsSwarm</param>
<param name="CellLayout">elementCellLayout</param>
<param name="ParticleLayout">localLayout</param>
<param name="FeMesh">mesh-linear</param>
<param name="WeightsCalculator'">weights</param>
<param name="TimeIntegrator">timeIntegrator</param>
<param name="IntegrationPointMapper">mapper</param>
</struct>
<struct name="mapper">
<param name="Type">CoincidentMapper</param>
<param name="IntegrationPointsSwarm">picIntegrationPoints</param>
<param name="MaterialPointsSwarm">materialSwarm</param>
</struct>
<struct name="materialSwarmParticleLayout">
<param name="Type">MeshParticleLayout</param>
<param name="mesh">mesh-linear</param>
<param name="cellParticleCount">particlesPerCell</param>
</struct>
<struct name="materialSwarm">
<param name="Type">MaterialPointsSwarm</param>
<param name="CellLayout">elementCelllLayout</param>
<param name="ParticleLayout">materialSwarmParticleLayout</param>
<param name="FeMesh">mesh-linear</param>
<param name="SplittingRoutine">splittingRoutine</param>
<param name="RemovalRoutine">removalRoutine</param>
<param name="EscapedRoutine">escapedRoutine</param>
</struct>
<struct name="materialSwarmAdvector">
<param name="Type">SwarmAdvector</param>
<param name="Swarm">materialSwarm</param>
<param name="TimeIntegrator">timeIntegrator</param>
<param name="VelocityField">VelocityField</param>
<param name="PeriodicBCsManager">periodicBCsManager</param>
<param name="allowFallbackToFirstOrder">True</param>

85

86

APPENDIX A.

</struct>
<struct name="splittingRoutine">
<param name="Type">ReseedSplitting</param>
<param name="idealParticleCount">particlesPerCell</param>
</struct>
<struct name="solutionVelocity">
<param name="Type">SolutionVector</param>
<param name="FeVariable">VelocityField</param>
</struct>
<struct name="solutionPressure">
<param name="Type">SolutionVector</param>
<param name="FeVariable">PressureField</param>
</struct>
<struct name="mom_force">
<param name="Type">ForceVector</param>
<param name="FeVariable">VelocityField</param>
<param name="ExtraInfo">context</param>
</struct>
<struct name="cont_force">
<param name="Type">ForceVector</param>
<param name="FeVariable">PressureField</param>
<param name="ExtraInfo">context</param>
</struct>
<struct name="k_matrix">
<param name="Type">StiffnessMatrix</param>
<param name="RowVariable">VelocityField</param>
<param name="ColumnVariable">VelocityField</param>
<param name="RHS">mom_force</param>
<param name="allowZeroElementContributions">False</param>
</struct>
<struct name="constitutiveMatrix">
<param name="Type">ConstitutiveMatrixCartesian</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="StiffnessMatrix">k_matrix</param>
</struct>
<struct name="g_matrix">
<param name="Type">StiffnessMatrix</param>
<param name="RowVariable">VelocityField</param>
<param name="ColumnVariable">PressureField</param>
<param name="RHS">cont_force</param>
<param name="allowZeroElementContributions">False</param>
</struct>
<struct name="gradientStiffnessMatrixTerm">
<param name="Type">GradientStiffnessMatrixTerm</param>
<param name="Swarm">gaussSwarm</param>
<param name="StiffnessMatrix">g_matrix</param>
</struct>
<struct name="preconditioner">
<param name="Type">StiffnessMatrix</param>
<param name="RowVariable">PressureField</param>
<param name="ColumnVariable">PressureField</param>
<param name="RHS">cont_force</param>
<param name="allowZeroElementContributions">True</param>
</struct>

INPUT FILE FORMAT

A.2. BASIC COMPONENTS 87

<struct name="preconditionerTerm">
<param name="Type">UzawaPreconditionerTerm</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="StiffnessMatrix">preconditioner</param>
</struct>
<struct name="uzawa">
<param name="Type">Stokes_SLE_UzawaSolver</param>
<param name="Preconditioner">preconditioner</param>
<param name="tolerance">1.0e-5</param>
<param name="maxIterations">5000</param>
</struct>
<struct name="stokesEqn">
<param name="Type">Stokes_SLE</param>
<param name="SLE_Solver">uzawa</param>
<param name="Context">context</param>
<param name="StressTensorMatrix">k_matrix</param>
<param name="GradientMatrix">g_matrix</param>
<param name="DivergenceMatrix"></param>
<param name="CompressibilityMatrix">c_matrix</param>
<param name="VelocityVector">solutionVelocity</param>
<param name="PressureVector">solutionPressure</param>
<param name="ForceVector">mom_force</param>
<param name="ContinuityForceVector">cont_force</param>
<param name="killNonConvergent">false</param>
<param name="nonLinearMaxIterations">nonLinearMaxIterations</param>
<param name="nonLinearTolerance">nonLinearTolerance</param>
<param name="makeConvergenceFile">false</param>
</struct>
<struct name="c_matrix">
<param name="Type">StiffnessMatrix</param>
<param name="RowVariable">PressureField</param>
<param name="ColumnVariable">PressureField</param>
<param name="RHS">cont_force</param>
<param name="allowZeroElementContributions">True</param>
</struct>
<struct name="mixedStabiliser">
<param name="Type">MixedStabiliserTerm</param>
<param name="Swarm">gaussSwarm</param>
<param name="picSwarm">picIntegrationPoints</param>
<param name="storeVisc">storeViscosity</param>
<param name="StiffnessMatrix">c_matrix</param>
</struct>
<struct name="background">
<param name="Type">Everywhere</param>
</struct>
<struct name="escapedRoutine">
<param name="Type">EscapedRoutine</param>
<param name="idealParticleCount">0</param>
</struct>
<struct name="velocityRemesher">
<param name="Type">StripRemesher</param>
<param name="mesh">mesh-linear</param>
<param name="meshType">regular</param>
<list name="dim">

88 APPENDIX A.

<param>true</param>
<param>true</param>
<param>true</param>
</list>
</struct>
<struct name="storeViscosity">
<param name="Type">StoreVisc</param>
<param name="MaterialPointsSwarm">materialSwarm</param>
</struct>
<struct name="storeStress">
<param name="Type">StoreStress</param>
<param name="MaterialPointsSwarm">materialSwarm</param>
</struct>

For almost all simulations, you will not need to change these components.

A.3 Temperature components

INPUT FILE FORMAT

To configure Gale to use and evolve the temperature, you need to add the following components

<!-- Temperature components -->
<struct name="temperature">
<param name="Type">MeshVariable</param>
<param name="Rank">Scalar</param>
<param name="DataType">Double</param>
<param name="mesh">mesh-linear</param>
</struct>
<struct name="temperatureBCs">
<param name="Type">CompositeVC</param>
<param name="Data'">mesh-linear</param>
</struct>
<struct name="temperatureICs">
<param name="Type">CompositeVC</param>
<param name="Data'">mesh-linear</param>
</struct>
<struct name="temperatureDofLayout">
<param name="Type">DofLayout</param>
<param name="mesh">mesh-linear</param>
<list name="BaseVariables">
<param>temperature</param>
</list>
</struct>
<struct name="TemperatureField">
<param name="Type">FeVariable</param>
<param name="FEMesh">mesh-linear</param>
<param name="DofLayout">temperatureDofLayout</param>
<param name="BC">temperatureBCs</param>
<param name="IC">temperatureICs</param>
<param name="LinkedDofInfo">temperaturelLinkedDofs</param>
</struct>
<struct name="TemperatureGradientsField">
<param name="Type">OperatorFeVariable</param>
<param name="Operator">Gradient</param>
<param name="FeVariable">TemperatureField</param>

A3

TEMPERATURE COMPONENTS 89
</struct>
<!-- Energy Equation -->

<struct name="residual">
<param name="Type">ForceVector</param>
<param name="FeVariable">TemperatureField</param>
</struct>
<struct name="massMatrix">
<param name="Type">ForceVector</param>
<param name="FeVariable">TemperatureField</param>
</struct>
<struct name="predictorMulticorrector">
<param name="Type">AdvDiffMulticorrector</param>
</struct>
<struct name="EnergyEqn">
<param name="Type">AdvectionDiffusionSLE</param>
<param name="SLE_Solver">predictorMulticorrector</param>
<param name="Context'">context</param>
<param name="PhiField">TemperatureField</param>
<param name="Residual">residual</param>
<param name="MassMatrix">massMatrix</param>
<param name="courantFactor">0.25</param>
</struct>
<struct name="lumpedMassMatrixForceTerm">
<param name="Type">LumpedMassMatrixForceTerm</param>
<param name="Swarm">gaussSwarm</param>
<param name="ForceVector">massMatrix</param>
</struct>
<struct name="defaultResidualForceTerm">
<param name="Type">AdvDiffResidualForceTerm</param>
<param name="Swarm">gaussSwarm</param>
<param name="ForceVector">residual</param>
<param name="Extralnfo">EnergyEqn</param>
<param name="VelocityField">VelocityField</param>
<param name="defaultDiffusivity">defaultDiffusivity</param>
<param name="UpwindXiFunction">Exact</param>
</struct>
<struct name="internalHeatingTerm">
<param name="Type">RadiogenicHeatingTerm</param>
<param name="ForceVector">residual</param>
<param name="Swarm">picIntegrationPoints</param>
</struct>

You should never need to modify these components.
You need to specify the thermal diffusivity. You can specify a single diffusivity for all materials by adding
a line like

<param name="defaultDiffusivity">1</param>

to the list of variables. You can also override this default for each material (see Section [A.5)). Gale also uses
defaultDiffusivity when computing the time step. Specifically, it uses the smaller the time step from the
Stokes solve and courantFactor x dx * dx/de faultDif fusity (dx is the smallest grid spacing).

You will also need to add in initial and boundary conditions (see Sections and . Finally, you
may want to set material properties for the buoyancy forces (see Section and radiogenic heating (see

Section [A.5)).

90 APPENDIX A. INPUT FILE FORMAT

’ Defaults \ ‘
’de%uhiﬁﬂhﬁvﬁy\ 1‘

A.4 Shapes

When setting up a simulation, Gale reads in shapes to determine what to put where. For example, you can
create a simulation with different materials by creating different shapes and putting different materials in
them. As a simple example, you can create a 3D box

<struct name="simpleBox">
<param name="Type">Box</param>
<param name="startX">0.0</param>
<param name="endX">1.0</param>
<param name="startY">0.0</param>
<param name="endY">1.0</param>
<param name="startZ">0.0</param>
<param name="endZ">1.0</param>

</struct>

You can perform operations on shapes to create new shapes. For example, if you also create a sphere

<struct name="simpleSphere">
<param name="Type">Sphere</param>
<param name="radius">1.0</param>
</struct>

then you can compose it with the box to create a new shape

<struct name="nonSphere">
<param name="Type">Intersection</param>
<list name="shapes">
<param>simpleBox</param>
<param>!simpleSphere</param>
</list>
</struct>
Note that the exclamation point “!” in front of simpleSphere means “not.” So Intersection creates a
shape that is the intersection of the box and everywhere outside of the sphere. You can list an arbitrary
number of shapes in Intersection. Also, you can use Union to create a shape that covers all of the input
shapes.
In addition, every shape accepts the translation variables CentreX, CentreY, and CentreZ, and the Euler
angles alpha, beta, and gamma. So if you modify the Box example above to

<struct name="simpleBox">
<param name="Type">Box</param>
<param name="CentreX">1.0</param>
<param name="startX">0.0</param>
<param name="endX">1.0</param>
<param name="startY">0.0</param>
<param name="endY">1.0</param>
<param name="startZ">0.0</param>
<param name="endZ">1.0</param>

</struct>

A.4. SHAPES 91

then the box will actually span from 1 to 2.

The Euler angles use the y convention, first rotating about the original z axis an angle 7y, then rotating
around the new y axis an angle 3, and finally a rotation around the new z axis an angle «. Specifically,
these rotations are expressed through the rotation matrix

—sinasiny + cosacos fcosy sinacosy + cosSsinycosa —cosasinf
R= —cosasiny —cosfcosysina cosacosy —cosfsinysina sinasinf
sin 3 cos sin B sin «r cos 3

So when Gale attempts to figure out whether a coordinate (z,y,z) is inside a shape, it creates a new
coordinate

x T CentreX
y | = y | — | CentreY R,
2 z CentreZ

which it uses in the formulas below.
Finally, you can command Gale to invert the shape with the invert variable, making the inside the
outside and vice versa.

’ Defaults \ ‘

CentreX
CentreY
CentreZ
alpha
beta
gamma 0
invert False

(o] Ben] Hen) Hen) Han]

A.4.1 BelowCosinePlane

jod
y < of fset + delta * cos (Wpfgéo * T +phase>
’ Defaults \ ‘

offset 0

delta 0.5

period 1

phase

See also the notes for BelowPlane.
A.4.2 BelowPlane
y < of fset

This shape also uses the variables minX, minY, minZ, max X, maxY, and maxZ, which are only used
when computing the volume of this shape.

Defaulis ||

offset
minX
minY
minZ
maxX
maxyY
maxZ

ol Bl el K==] K==} Nen) Nan}

92

A.4.3 Box

startX <z < endX
startY <y < endY
startZ < z < endZ

Alternately, you can use widths, in which case

|z] < widthX/2
ly| < widthY /2 .
|2| < widthZ/2

APPENDIX A. INPUT FILE FORMAT

You may mix and match these specification (e.g., use start/end for , and width for y). If both are specified

for one coordinate, Gale will use start and end.

Defulis [
widthX
widthY
widthZ

oo o

A.4.4 ConvexHull

This shape is a convenience function for creating intersections of BelowPlane. The input is a list of vertices.
From each vertex, Gale computes a vector and plane normal to this vector. The half spaces below the planes
are then intersected to create a shape. At present, you may only use three vertices in 2D, and four vertices

in 3D. As an example, the shape

<struct name="triangleShape">
<param name="Type">ConvexHull</param>
<list name="vertices">

<asciidata>
<columnDefinition name = "x" type="double"/>
<columnDefinition name = "y" type="double"/>
1.0 1.0
-1.0 1.0
0.0 -1.0
</asciidata>
</list>
</struct>

creates a shape with vertices at (0,2), (4,-2), (-4,-2).

A.4.5 Cylinder

This shape uses a variable perpendicular Axzis to determine which direction is perpendicular to the axis of
the cylinder. This variable accepts any of (x, y, z, X, Y, Z, 1, j, k, I, J, K, 0, 1, 2). For the case where

perpendicular Axis = z, then

radius® > x? + y?
startX < x < endX
startY <y <endY -
startZ < z < endZ

A.4. SHAPES 93

’ Defaults \ ‘
radius
startX
startY
startZ
endX
endY
endZ

2(8(8]g]g|g|

A.4.6 Everywhere

This is a convenience shape simply meaning everywhere.

A.4.7 PolygonShape

This is primarily a two-dimensional shape. The input to this shape is a list of vertices. To figure out whether
a point is inside the polygon, Gale adds up all of the angles of the vectors going to the vertices. If the point is
inside the polygon, then the angles will sum to £+27, depending on which direction you specify the vertices.
If the point is outside the polygon, then the angles sum to 0. A simple example is a triangle

<struct name="triangleShape">
<param name="Type">PolygonShape</param>
<list name="vertices">

<asciidata>
<columnDefinition name = "x" type="double"/>
<columnDefinition name = "y" type="double"/>
0.0 0.0
1.0 0.0
1.0 1.0
</asciidata>
</list>
</struct>

This creates a triangle with vertices at (0,0), (1,0), (1,1).
You can extrude this shape into three dimensions by specifying startZ and endZ.

Defaulis ||

startZ 0
endZ 0

A.4.8 Sphere

z? + 9% + 2% < radius®

Defaulis ||
radivs [0]

94 APPENDIX A. INPUT FILE FORMAT

A.4.9 Superellipsoid

In two dimensions

(T)2/epsilon1 (Yy)Q/epsilonl

_ 1
radiusX radiusY <b

and in three dimensions

T 2/epsilon2 y 2/epsilon2 epsilon2/epsilonl 2 2/epsilonl
oy oy Yy
((radzusX) radiusY > radiusZ

Defaulis ||

radiusX
radiusY
radiusZ
epsilonl
epsilon2

=] = = =] =

A.5 Materials

Gale supports two kinds of rheologies: viscous and yielding. You can combine these two rheologies to create
a more realistic composite rheology. You then pair this composite rheology with a shape to actually lay
down material on the grid. As a simple example, you can create a viscous rheology

<struct name="viscousRheology">
<param name="Type">MaterialViscosity</param>
<param name="eta0">10.0</param>

</struct>

and a Von Mises yielding rheology

<struct name="strainWeakening">
<param name="Type">StrainWeakening</param>
<param name="TimeIntegrator">timeIntegrator</param>
<param name="MaterialPointsSwarm">materialSwarm</param>
<param name="softeningStrain">0.1</param>
<param name="initialDamageFraction">0.0</param>
<param name="initialDamageWavenumber">0.5</param>
<param name="initialDamageFactor">0.5</param>
<param name="healingRate">0.0</param>

</struct>

<struct name="yieldingRheology">

<param name="Type">VonMises</param>

<param name="cohesion">10.0</param>

<param name="cohesionAfterSoftening">1.0</param>
</struct>

and combine them together with materialShape (see Section on how to create shapes)

<struct name="yieldingMaterial">
<param name="Type">RheologyMaterial</param>
<param name="Shape">yieldingShape</param>
<list name="Rheology">

A.5. MATERIALS 95

<param>viscousRheology</param>
<param>yieldingRheology</param>
</list>
</struct>

For each material, you can specify a density, a coefficient of thermal expansivity («), and a thermal diffusivity.
The density and expansivity are used by the BuoyancyForceTerm component (see Section [A.11.1)) to
create buoyancy forces. The diffusivity is used by the temperature solver (see Section .
You can also specify multiple radiogenic heating rates (Q) and radiogenic timescales (\). This simulates
the action of multiple radioactive materials with different half-lives. To enable this, you must provide a list
of Qs and As. For example, to specify two different radioactive species, add something like

<list name="heatingElements">
<struct>
<param name="Q">1.0</param>
<param name="lambda">1.0</param>
</struct>
<struct>
<param name="Q">2.0</param>
<param name="lambda">2.0</param>
</struct>
</list>

At a given time ¢, each radioactive element will generate

Qef)\t

units of energy.

’ Defaults \ ‘

density
alpha
diffusivity
Q
lambda

oo =olo

A.5.1 StoreVisc and StoreStress

These are not rheologies per se, but rather extra fields where Gale saves the effective isotropic viscosity and
components of the stress tensor. For pure viscous materials, the effective viscosity will be the same as the
viscosity you supply. For yielding rheologies, the effective viscosity will change as the particle yields. These
components needs a MaterialPointsSwarm, which in all of the sample input files is called materialSwarm.

’ Defaults \ ‘
’ MaterialPointsSwarm \ none ‘

A.5.2 Viscous
A.5.2.1 MaterialViscosity

This is the simplest rheology. There is only one variable, the viscosity etaO.

(Defalis ||

96 APPENDIX A. INPUT FILE FORMAT

A.5.2.2 Frank-Kamenetskii

This is a temperature-dependent viscosity

eta = etal * exp (—theta x T) .

[Defaulis ||
etal 1
theta 0

A.5.2.3 Arrhenius

This is another temperature dependent viscosity

eta = etal * exp ((activationEnergy + activationVolume x (height — y)) / (T + referenceT emperature)) .

Note that height is the height of the column, not the overall maximum height of the material. Also, height
does not consider material boundaries. So if you have an air layer, you may get surprising results.

’ Defaults \ ‘
etal
activationEnergy
activationVolume
referenceTemperature

= OO =

A.5.2.4 NonNewtonian

This is a strain rate dependent rheology. It assumes that the material obeys the relation
e =Ar"exp (-To/T),
where ¢ is the strain rate, 7 is the stress, and A , Ty, and n are constants. Using
T = 2n¢,
we can write the viscosity as

B gn~Lexp (Ty/nT)
24w

When setting the viscosity for the first solve, the strain rate has not been calculated yet. So you must
supply a reference strain rate for that first step. Gale uses this viscosity to find a solution and thus a new
strain rate. Gale then iterates until the strain rate converges.

You may set maximum and minimum values for the resulting viscosity. If the temperature is greater
than the melting temperature, then the viscosity is just set to the minimumViscosity.

’ Defaults \ ‘

n 1
T O 0
T melt ()
A 1
refStrainRate | -
minViscosity | -
maxViscosity | -

A.5. MATERIALS 97

A.5.3 Yielding

Yielding rheologies are a bit more complicated.

A.5.3.1 StrainWeakening

First you need to create a StrainWeakening component. StrainWeakening is mainly used to define an
initial distribution of strain in a material and to calculate the accumulated strain on each particle. To that
end, it requires a number of parameters.

Timelntegrator This is the component used for time integration to accumulate strain. Given the standard
components in Section this will be timeIntegrator.

MaterialPointsSwarm This is the swarm of particles associated with this rheology. Given the standard
components in Section this will be materialSwarm.

healingRate With this parameter, accumulated strain can decrease. Specifically, the time derivative of

accumulated strain becomes
Oyield B .
——— | —— — healingRate |,
n \1-5
where 8 = 0yie1d/0, Oyiela is the yield stress, o is some measure of the current stress (e.g., the second
invariant of the stress tensor), and 7 is the isotropic viscosity. Note that the healing rate should be
between 0 and 1.

initialSofteningStrain The strain at which the material starts to yield.
finalSofteningStrain The strain at which the material has fully yielded.
initialDamageFraction The chance that an individual material particle will have a non-zero initial strain.

initialDamageWaveNumber The wavenumber for the initial random strain. To avoid having initial strain
on the edges of the box, this should be set to the inverse of the horizontal length of the box.

initialDamageFactor The maximum initial random strain for a particle is
initialDamageFactor*finalSofteningStrain.

randomSeed A random number seed used when computing which particles are initially strained.

initialStrainShape If defined, the initial random strain will only occur within this shape (outside the shape
the initial random strain will be zero).

strainLimitedShape If defined, the strain within this shape will not grow beyond strainLimit.

strainLimit The maximum amount of strain allowed within strainlLimitedShape.

You can also define a strain weakening ratio a = min (1,v/Ysoftening), Where « is the accumulated strain,
and Ysoftening 18 the softening strain. This allows us to define quantities like the effective cohesion C' =
Christine (1 — &) + Cyiergeacr and effective friction coefficient tan ¢’ = tan @pristine (1 — @) + tan ¢yieigeacr.

Defaults \ ‘
Timelntegrator none
MaterialPointsSwarm none
healingRate 0
initialsofteningStrain 0
finalsofteningStrain 00
initialDamageFraction 0
initialDamageWaveNumber | -1.0
initialDamageFactor 1.0
randomSeed 0
initialStrainShape none

98 APPENDIX A. INPUT FILE FORMAT

A.5.3.2 VonMises

This is the simplest yielding rheology in Gale. The yielding stress is simply the effective cohesion. Specifically,
the yielding condition specifies

Vil =
where Js is the second invariant of the deviatoric stress tensor. This rheology only has a few input parameters:
e cohesion and cohesionAfterSoftening have the obvious meanings.
e minimumYieldStress sets an absolute minimum to the stress required to make the material yield.

e StrainRateSoftening is a Boolean variable that changes how the constitutive matrix is modified when
the material has yielded. If StrainRateSoftening is True, then the viscosity is set to

Nnew = 2C7°n/ (C + J5) .

This is a way of creeping up on the correct viscosity to avoid setting the viscosity too low. Otherwise
the viscosity is set to

Mhew = 770//\/727

which essentially sets the stress of the particle to the yield stress.

’ Defaults \ ‘
cohesion 0
cohesionAfterSoftening 0
minimumYieldStress 0
StrainRateSoftening False

A.5.3.3 DruckerPrager

This rheology uses the same parameters as Von Mises, but also adds a friction coefficient that can soften.
Specifically, the yield condition is

\/Jo = Ap + B,
where p is the pressure. The value of the constants A and B are different from 2D and 3D. In 2D, Drucker-
Prager and Mohr-Coulomb are identical. Specifically, if we write the Mohr-Coulomb yield stress as

omec =C"+ o0, tang’,

then

A = sing

B = (C'cos¢’ ’

In 3D, the mapping between friction angles and cohesion to A and B is more complicated

_ 2sin ¢’
4 = V/3(3—sin ¢’)
B = 6C" cos ¢’ .
V3(3—sin ¢')

You can also write a Mohr-Coulomb rheology in this form, but then the constants A and B depend on Js.
So reducing the viscosity does not result in a linear decrease in J,. This makes it difficult for the code to
find a solution. In practice, the yield surface for Drucker-Prager and Mohr-Coulomb are not too dissimilar.
Mohr-Coulomb’s yield surface is a six-sided cone, while Drucker-Prager’s yield surface is the smooth cone
inscribing the Mohr-Coulomb segmented cone.

A.5. MATERIALS 99

Note that minimumYieldStress is interpreted differently. If it is zero (the default), then the actual
minimum yield stress will be the effective cohesion. This is because there tends to be numerical problems
when using a very small minimum yield stress under tension.

When reducing the viscosity, if the second invariant of the strain rate tensor € is greater than maximumStrainRate
(émaz) and €4, # 0, then Drucker-Prager sets the new viscosity to

_ Ap+B
ew = e

Otherwise, Drucker-Prager sets the new viscosity such that the stress will equal the yield stress

_Ap+B
nnew \/g .

After that, if 7,,c, is less than minimumViscosity, then 7,e, is set to minimumViscosity. See Section [d.2.1]
for more details on how to use maxStrainRate and minimumViscosity.

Also, the Drucker-Prager implementation allows you to specify that material near the boundary will
have different yielding properties. This is useful for simulating frictional boundaries. For example, if
boundaryLeft is True, then in the element on the left boundary, Gale will use boundaryCohesion instead
of cohesion, boundaryFrictionCoefficient instead of frictionCoefficient, etc.

Finally, DruckerPrager requires a pressure. If you are using HydrostaticTerm (see Section [A.10)), you
have to remember to give it that as well.

’ Defaults \ ‘
] PressureField \ none \
’ HydrostaticTerm \ none ‘
frictionCoefficient 0
frictionCoefficient AfterSoftening 0
minimumYieldStress 0 (see above)
minimumViscosity 0
maxStrainRate 0
boundaryCohesion 0
boundaryCohesionAfterSoftening 0
boundaryFrictionCoefficient 0
boundaryFrictionCoefficientAfterSoftening 0
boundaryLeft False
boundaryRight False
boundaryTop False
boundaryBottom False
boundaryFront False
boundaryBack False

See also Section [A.5.3.2]

A.5.3.4 FaultingMoresiMulhaus2006

This is a fairly complicated non-isotropic rheology. The full details can be found in Moresi and Miilhaus
(2006) [4], but essentially it keeps track of which direction a material is strained. To do so, it uses a
component called Director. For the standard components given in Section this would be

<struct name="director">
<param name="Type">Director</param>
<param name="TimeIntegrator">timeIntegrator</param>
<param name="VelocityGradientsField">VelocityGradientsField</param>
<param name="MaterialPointsSwarm">materialSwarm</param>

100 APPENDIX A. INPUT FILE FORMAT

<param name="initialDirectionX">0.0</param>

<param name="initialDirectionY">1.0</param>

<param name="initialDirectionZ">0.0</param>

<param name="dontUpdate">True</param>
</struct>

Otherwise, it adds one variable not present in DruckerPrager: ignore0ldOrientation. This tells Gale
whether it should check to see whether material will weaken further in the current direction, or if it should
try every direction equally each time step.

Defaults \ ‘

cohesion
cohesionAfterSoftening
frictionCoeflicient
frictionCoefficient AfterSoftening
minimumYieldStress 0
ignoreOldOrientation False

(o] Ren) Hen) New)

A.6 Boundary Conditions

Gale’s computational domain is logically Euclidean. So in 2D, there are four boundaries: right, left, top,
and bottom. 3D adds front and back. Note that the boundaries in the 2z axis are front and back, not top
and bottom. In many cases, this makes it simple to switch between 2D and 3D. When doing this, you may
ignore the warning that the z boundaries are empty in 2D.

A.6.1 Velocity Boundary Conditions

To impose boundary conditions on the velocity, add a composite variable condition (CompositeVC) to the
input file. Within that CompositeVC, add a list of conditions by using WallVCs. Within each WallVC, specify
which boundary and what the velocity’s value is. For example, to set the y velocity on the bottom to zero,
add

<struct name="velocityBCs">
<param name="type">CompositeVC</param>
<list name="vcList">
<struct>
<param name="type">WallVC</param>
<param name="wall">bottom</param>
<list name="variables">
<struct>
<param name="name">vy</param>
<param name="type">double</param>
<param name="value">0</param>
</struct>
</list>
</struct>
</list>
</struct>

If, instead, you set vy to a non-zero value, then the boundary will move as the simulation proceeds. If you
want the sides to remain fixed, then you probably want flux boundaries, in which case you will also have to

specify a few more things (see Section [A.6.2)).
You can also set the velocity to a function. For example, to also set the = velocity to have a Gaussian

distribution exp <7 (wa_olﬁ) 2)

A.6. BOUNDARY CONDITIONS 101

<struct name="velocityBCs">
<param name="type">CompositeVC</param>
<list name="vcList">
<struct>
<param name="type">WallVC</param>
<param name="wall">bottom</param>
<list name="variables">
<struct>
<param name="name">vy</param>
<param name="type">double</param>
<param name="value">0</param>
</struct>
<struct>
<param name="name">vx</param>
<param name="type">func</param>
<param name="value">Gaussian</param>
</struct>
</list>
</struct>
</list>
</struct>
<param name="GaussianHeight">1.0</param>
<param name="GaussianWidth">0.1</param>
<param name="GaussianCenter">0.5</param>
<param name="GaussianDim">0</param>

Note that the parameters are separated out into the variables section (see Section . In general, you
can use any of the Standard Condition Functions (see Section to specify the velocities.

If you need to specify velocities for only part of the boundary (e.g., the left half moves at vx=1, the right
half is unconstrained), then you should use a ShapeVC (see Section .

A.6.2 Flux Boundary Conditions

Let’s assume you wish to have material flow across the boundary instead of having the boundary move. A
simple example would be like Figure where material flows in from the left and out through the bottom.
There are three things that you must specify for this to work.

1. The boundaries do not move. For this model, you need to ensure that, while the material moves,
neither the bottom nor left boundaries move. Do this by specifying

<param name="staticBottom">True</param>
<param name="staticLeft">True</param>

in EulerDeform (see Section [A.1.2.1]).

2. Velocity conditions on the boundaries. Again, for slab subduction this involves inflow conditions
on the left boundary and outflow conditions on bottom. See Section for details. The other
boundaries have no-slip conditions.

3. Special parameter for population control. You must specifically tell Gale that you are running
a simulation where particles may be created by inflow. This is done by specifying

<param name="Inflow">True</param>

in the PCDVC struct.

102 APPENDIX A. INPUT FILE FORMAT

A.6.3 Stress Boundary Conditions

If the nature of your problem is that stresses are specified on the boundary rather than velocities, you can
specify those conditions using the StressBC component. For example, if you want to simulate an extension
model with isostasy, this is equivalent to adding a supporting stress on the bottom. In equilibrium, the
supporting stress cancels the force of gravity, and material does not flow across the boundary. When material
piles up, the supporting stress is too weak to support the material, and material flows out. Similarly, when
material thins out, the supporting stress overcomes gravity and material flows in.

StressBC is a component, so it must be inside the list of components (see Section , not outside
the list like the velocity boundary conditions. For example, to incorporate an isostatic bottom boundary
condition, you would specify the stress on the bottom boundary in the y direction as a constant.

<struct name="stressBC">
<param name="Type">StressBC</param>
<param name="ForceVector">mom_force</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="wall">bottom</param>
<param name="y_type">double</param>
<param name="y_value">1.0</param>

</struct>

You can also use the Standard Condition Functions (see Section [A.13)), but due to technical issues, you must
list Standard Condition Functions before StressBC in the list of components. So, for example, to add a stress
condition to the left wall with a Gaussian shape, the complete list of components would be

<struct name="conditionFunctions">
<param name="Type">StgFEM_StandardConditionFunctions</param>
</struct>
<struct name="stressBCBottom">
<param name="Type">StressBC</param>
<param name="ForceVector">mom_force</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="wall">bottom</param>
<param name="y_type">double</param>
<param name="y_value">1.0</param>
</struct>
<struct name="stressBCLeft">
<param name="Type">StressBC</param>
<param name="ForceVector">mom_force</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="wall">left</param>
<param name="x_type">func</param>
<param name="x_value">Gaussian</param>
</struct>

And then in the list of variables (see Section |A.1.4), add the parameters for the Gaussian:

<param name="GaussianHeight">1.0</param>
<param name="GaussianWidth">0.1</param>
<param name="GaussianCenter">0.5</param>
<param name="GaussianDim">0</param>

The type can also be HydrostaticTerm. If you are using a HydrostaticTerm component (see Section ,
then you need a StressBC component on the top to act as a restoring force when the surface of the material
dips below equilibrium. So it would be something like

A.6. BOUNDARY CONDITIONS 103

<struct name="stressBCTop">
<param name="Type">StressBC</param>
<param name="ForceVector">mom_force</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="wall">top</param>
<param name="y_type">HydrostaticTerm</param>
<param name="y_value">hydrostaticTerm</param>
</struct>

If the bottom boundary can move (that is, you have not set StaticBottom in EulerDeform and v, # 0),
and the material outside the simulation is different from inside, then you must also set a StressBC on the
bottom. For this, you must also set bottomDensity, giving something like

<struct name="stressBCTop">
<param name="Type">StressBC</param>
<param name="ForceVector">mom_force</param>
<param name="Swarm">picIntegrationPoints</param>
<param name="wall">bottom</param>
<param name="y_type">HydrostaticTerm</param>
<param name="y_value">hydrostaticTerm</param>
<param name="bottomDensity">3000</param>
</struct>

Note that you must not have a separate StressBC for each direction of the normal stress (x,y,z). StressBC
will automatically apply the proper force in all directions.

A.6.4 Temperature Boundary Conditions

Setting the boundary conditions on the temperature works almost exactly the same as velocity boundary
conditions (see Section [A.6.1)). You need only change velocityBCs to temperatureBCs and the velocity
variable (e.g., vx) to temperature. For example, to set the bottom temperature to 1, you would add

<struct name="temperatureBCs">
<param name="type">CompositeVC</param>
<list name="vcList">
<struct>
<param name="type">WallVC</param>
<param name="wall">bottom</param>
<list name="variables">
<struct>
<param name='"name">temperature</param>
<param name="type">double</param>
<param name="value">1.0</param>
</struct>
</list>
</struct>
</list>
</struct>

A.6.5 Deformed Upper and Lower Boundaries

Normally, Gale starts the simulation in a rectangular box. As the simulation proceeds, the boundaries can
become distorted, in particular the upper boundary. However, you can also configure Gale to start with an
initially deformed upper or lower boundary by adding a SurfaceAdaptor component. A simple example is
to make the top a sinusoid

104 APPENDIX A. INPUT FILE FORMAT

<struct name="surfaceAdaptor">

<param name="Type">SurfaceAdaptor</param>

<param name="mesh">mesh-linear</param>

<param name="sourceGenerator">cartesianGenerator</param>

<param name="topSurfaceType">cosine</param>

<list name="topOrigin">

<param>0.0</param>

</list>

<param name="topAmplitude">0.1</param>

<param name="topFrequency">6.28318530718</param>
</struct>

This sets the height of the surface to

h = hg + amplitude * cos (x * frequency) ,

where hy is the original height.
Note that many of the variables are prefaced with "top”. You can also use "bottom” there, and thus
modify the height of the bottom boundary. So if you modified the example above to

<struct name="surfaceAdaptor">
<param name="Type">SurfaceAdaptor</param>
<param name="mesh">mesh-linear</param>
<param name="sourceGenerator">cartesianGenerator</param>
<param name="topSurfaceType">cosine</param>
<list name="topOrigin">
<param>0.0</param>
</list>
<param name="topAmplitude">0.1</param>
<param name="topFrequency">6.28318530718</param>
<param name="bottomSurfaceType">cosine</param>
<list name="bottomOrigin">
<param>0.0</param>
</list>
<param name="bottomAmplitude">0.1</param>
<param name="bottomFrequency">6.28318530718</param>
</struct>

then the top and bottom will follow similar curves.

The other supported surface types are sine, wedge, cylinder, plateau and topo_data. sine takes the
same arguments as the cosine example above. wedge takes three arguments, BeginOffset, EndOffset, and
Gradient, and sets the height to

ho x < BeginOf fset
h= ho + Gradient (x — BeginOf f set) BeginOf fset < x < EndOf fset
ho + Gradient (EndO f fset — BeginOf f set) x> EndOf fset

cylinder takes 6 arguments: X0, YO, Radius, MinX, MaxX, and Sign. If we define

2’ = max (min (x, Maz X) , MinX)
d = \/Radius® — (x — 1')? ’

then the height is set to

b — ho+Y0+d Sign=true
Tl ho+Y0—d Sign= false

A.6. BOUNDARY CONDITIONS 105

topl

topX1l topX2 topX3 topX4

Figure A.1: Height of plateau as a function of the parameters

plateau takes up to 9 arguments: X1, X2, X3, X4, Z1, Z2, Z3, Z4, and Height. In 2D, it sets the height
as shown in Figure In 3D, an equivalent thing is done in z, so you end up with a rectangular plateau.

topo_data reads in an ascii file with the name from SurfaceName (“ascii_topo” by default). The file
has a grid with Nx*Nz points covering the area from (MinX,MinY) to (MaxX,MaxY). Gale then interpolates the
heights from that grid to its own grid.

If you want to implement your own surface functions, look in

src/StgDomain/Mesh/src/SurfaceAdaptor.c

A.6.6 Erosion

Gale has two different models for modeling erosion. After Gale computes a solution to the Stokes flow, both
of these work by modifying the velocity of the top nodes of the mesh. So it does not keep track of where
material comes from and where it goes.

A.6.6.1 Diffusion

This plugin applies a diffusive operator to the top. Specifically,

ogy . . Dy
5 = —dszuswnCoeffzczentw.

You enable diffusion by adding the plugin SurfaceProcess.

A.6.6.2 HRS Erosion

This plugin applies the erosion law as described in Hilley and Strecker [20]. In particular, it forces the slope
to be

2K k™ hm—1gQn
Q= TGpg + tan™! <2vTW_2— 2Kk W 5),

(hm +]-) dte'r‘osion

where

S = tan! (@o1d) ,
a = (ymaw - yO) /Wa
W, Ymaz and yo are determined by the geometry as in Figure and vT, K, ks, h, m, n, and dte,osion are

specified by the input file. Erosion is only applied at intervals of dte;osion and does not start eroding until
after first_t_erosion.

106 APPENDIX A. INPUT FILE FORMAT

ymax

_________ yo

Figure A.2: Geometry for HRS Erosion

’ Defaults \ ‘
vT -

K -

ka -

h -

m B
dt__erosion -
first t_ erosion | -

A.7 Solver Parameters

There are a number of parameters that control solver behavior. Pseudo-code for how it works is

for (i=0; i<=nonLinearMaxIterations; ++i)
{
for(j=0; j<=maxIterations; ++j)
{
Apply one linear iteration;
if (monitor)
print out residual and cpu time;
if (j>=minIterations)
{
if ((useAbsoluteTolerance
&& absolute_residual<tolerance)
|| ('useAbsoluteTolerance
&& relative_residual<tolerance))
break;

X

compute non-linear_residual;

if (i>=nonLinearMinIterations

&& non-linear_residual<nonLinearTolerance)

break;

if (i==nonLinearMaxIterations && killNonConvergent)
abort();

}

The linear iteration step is described more fully in Section The parameters for the linear solve are
set in the Stokes_SLE_UzawaSolver component

’ Defaults \ ‘
tolerance 10~°
maxIterations 1000
minlterations 1

useAbsoluteTolerance | False
monitor False

A.8. FIXING INTERNAL DEGREES OF FREEDOM 107

Note that in all of the example input files, tolerance is set equal to the global parameter linearTolerance.
The parameters for the non-linear solve are set in the Stokes_SLE component

’ Defaults \ ‘
nonLinearTolerance 10—2
nonLinearMaxIterations | 500
nonLinearMinlterations 1
killNonConvergent True

A.8 Fixing Internal Degrees of Freedom

While the velocity and temperature boundary conditions (see Sections [A.6.1| and [A.6.4]) can be used to
specify values on the boundary, it is sometime necessary to specify values within the domain as well. For
example, the region that you want to simulate may not map nicely to a rectangular domain. You can fix
the internal degrees of freedom for the areas outside of your irregular domain with a MeshShapeVC. It works
very similar to WallVC, except that you supply a shape rather than a wall for the condition to work on. For
example, adding

<struct>
<param name="type">MeshShapeVC</param>
<param name="Shape">fixedShape</param>
<list name="variables">
<struct>
<param name="name">vy</param>
<param name="type">double</param>
<param name="value">0</param>
</struct>
</list>
</struct>

to the list of WallVCs in the CompositeVC will fix the y velocity in the fixedShape region. Note that you
can also employ this as a boundary condition by making fixedShape only cover a wall. The main advantage
of this approach over a WallVC is that you can have it only cover a part of the wall, thus constraining only
part of the boundary. So if you wanted half of the boundary to move at a certain velocity, but wanted the
other half unconstrained, you would use a ShapeVC.

There is one important drawback to using a MeshShapeVC. MeshShapeVC constrains mesh points defined
by a shape initially. However, if the mesh deforms, then MeshShapeVC will still constrain the same points
on the grid. These points will be at a different location in space, so the constraint is now operating on a
different area. The only way to really prevent the mesh from deforming is to use static sides (see Section

A.1.2.1)) everywhere.

A.9 Temperature Initial Conditions

For temperature dependent problems, you need to set initial conditions for the temperature. Because we are
ignoring inertial effects, the interior velocity is completely determined by the boundary conditions. Setting
initial conditions is similar to setting boundary conditions. The only difference is to change the condition
type from WallVC to A11NodesVC. As an example, to set the initial temperature everywhere to 1, you would
add

<struct name="temperatureICs">
<param name="type">CompositeVC</param>
<list name="vcList">
<struct>
<param name="type">Al1lNodesVC</param>

108 APPENDIX A. INPUT FILE FORMAT

<param name="wall">bottom</param>
<list name="variables">
<struct>
<param name="name">temperature</param>
<param name="type">double</param>
<param name="value">1.0</param>
</struct>
</list>
</struct>
</list>
</struct>

A.10 HydrostaticTerm

This term subtracts out the hydrostatic part of the pressure as described in Section [2.2.8.3] It can subtract
out the pressure from a two layer model with a temperature profile described by the TemperatureProfile
standard condition function (see Section [A.13]). Specifically, it subtracts out a density given by

0 x > height
upperDensity - (1 — upper Alpha - T) material Boundary > x > height ,
lower Density - (1 — lower Alpha - T) x > material Boundary
where
T 0 x > height
T= T 0+ linearCoef ficient (height — x) x < height

“+exponentialCoef ficientl (1 — exp (—exponential Coef ficient2 (height — x)))

This component also computes a pressure by integrating this density profile analytically and multiplying by
gravity. Once you have created a HydrostaticTerm, you have to remember to pass it along to
BuoyancyForceTerm (Section [A.11.1)) and a StressBC (Section in order for it to take effect. You
also have to pass it to any DruckerPrager rheologies (Section that you are using, so that the
rheology will have the correct pressure.

’ Defaults \ ‘

upperDensity
upperAlpha
lowerDensity
lower Alpha
height
materialBoundary
T 0
linearCoefficient
exponentialCoefficient 1
exponentialCoefficient2
gravity

(en] Ren) Hen] Hen] Hen] o) Hen) Nen] Nen) Hen] Nan]

A.11 Buoyancy Forces

Gales supports two types of buoyancy forces. The first one, BuoyancyForceTerm, is more general, allowing
you to specify buoyancy properties for each material.

A.12. DIVERGENCE FORCES 109

A.11.1 BouyancyForceTerm

If you add this component, then there will be a force on each particle of
F = —pg.
If you specify a TemperatureField, then the force becomes
F=—-pg(1-aT).

The density (p) and coefficient of thermal expansivity («) are taken from the material properties (see Section
. The vector gravityDirection determines the direction of the force. In the sample input files,
ForceVector is always mom_force, and Swarm is always picIntegrationPoints.

If you have defined a HydrostaticTerm (Section), then you need to pass it in to the BuoyancyForceTerm
for it to take effect.

’ Defaults \ ‘
gravity 0
gravityDirection | (0,1,0)
TemperatureField | none
ForceVector none
Swarm none
HydrostaticTerm none

A.11.2 BuoyancyForceTermThermoChem
If you add this component, then there will be a vertical force on each particle of
F =—pRac.
If you specify a TemperatureField, then the force becomes
F = RarT — pRac.

The thermal (Rar) and chemical (Rac) Rayleigh numbers are the same for all materials. In contrast to
BuoyanceForceTerm, the force is always in the vertical (y) direction. In the sample input files, ForceVector
is always mom_force, and Swarm is always picIntegrationPoints.

Note that this component does not take a HydrostaticTerm, so you can not use this component if you
are using HydrostaticTerm.

’ Defaults \ ‘
RaC 0
RaT 0
TemperatureField | none
ForceVector none
Swarm none

A.12 Divergence Forces

As mentioned in Section [2.2.5] it is possible to add a divergence force to the continuity equation so that
material is created anew. The first three parameters will always be the same between input files.

ForceVector cont force

Swarm picIntegrationPoints

110 APPENDIX A. INPUT FILE FORMAT

GeometryMesh mesh-linear
The last three parameters specify the divergence.
DomainShape The divergence is only non-zero outside of this shape.

force type This can be either “double” or “func.” If set to “double,” then the divergence force will be a
constant. If set to “func,” then the divergence force can be any of the Standard Condition Functions

(see Section [A.13).

force value If “force_type” is “double,” then this must be a number. If “force_type” is “func,” then it
must be the textual name of one of the Standard Condition Functions (e.g., StepFunction).

A.13 Standard Condition Functions

Standard Condition Functions are functions that you can use to specify initial conditions and boundary
conditions. At present, they take in a coordinate (x, y, z) and output a function f(x,y, z). They are all defined
in the directory src/StgFEM/plugins/StandardConditionFunctions/. For the following descriptions, the
sides of the box are at x,in and Tymaz, and L = Tumar — Tmin, and all names with CamelCase capitalization
are variables from the input file. If you need to write your own function, see Section

Velocity SolidBodyRotation Returns the coordinates rotated by SolidBodyRotationOmega around the
z axis, centered at the coordinate (SolidBodyRotationCentreX, SolidBodyRotationY), out to a radius
RadiusCylinder. Specifically, if » < RadiusCylinder

f(z,y,2)s = =SolidBodyRotationOmega(y — SolidBodyRotationCentreY)
flz,y,2)y = SolidBodyRotationOmega(x — SolidBodyRotationCentreX) ’

otherwise returns 0.
Velocity PartialRotationX Returns the x component of Velocity_SolidBodyRotation.
Velocity PartialRotationY Returns the y component of Velocity _SolidBodyRotation.

TaperedRotationX If r < RadiusCylinder, returns Velocity PartialRotationX. If RadiusCylinder <
r < TaperedRadius, returns

T dRadius —
VelocityPartialRotationX(apered Radius — r) '

TaperedRadius — RadiusCylinder

If r > TaperedRadius, returns 0.
TaperedRotationY Similar to TaperedRotationX, but returns Velocity PartialRotationY.
Velocity SimpleShear f(x,y,z) = SimpleShearFactor (y — SimpleShearCentreY’)
Velocity Extension f(z,y,z) = ExtensionFactor (x — ExtensionCentreX)

Velocity PartialLid TopLayer Returns 0 if the x coordinate is within one grid point of the boundary;
1 otherwise.

Velocity LinearInterpolationLid

bcRight HandS'id lue — beLeftHandSid l
2y, 2) = beLe ft HandSideValue + < cRight HandSideV alue — beLe ft HandSideVa ue> -

L

2(x — Tymin) /L < L/2+ Zmin

Velocity Lid RampWithCentralMax f(z,y,2) = { 1= 2a — i —~ L)2) &> L/2+ 200t

A.13. STANDARD CONDITION FUNCTIONS 111

Velocity SinusoidalLid

f(z,y,2) =sin (WsinusoidalLidWavenumber)

Velocity Lid CornerOnly Returns 1 if the coordinate is on the right boundary.

Temperature CosineHill Returns a hill defined by a cosine. Specifically, if we define pre-rotated coor-

dinates
Tpre—rotate = CosineHillCentreX — SolidBodyRotationCentreX
Ypre—rotate = CosineHillCentreY — SolidBodyRotationCentreY
Zpre—rotate = CosineHillCentreZ — SolidBodyRotationCentreZ

and then rotate them around the z axis by the angle 8 = Solid BodyRotationOmega * t

Thill = Tpre—rotate COS 0 — Ypre—rotate sin 0
Yhill = Tpre—rotate S 0 + Ypre—rotate COS 0 P
Zhill = Zpre—rotate

then

27‘—7- . . .
4 cos (CosineHillDiameter) r< COS?neH/L_lZDZ.ameter
r > CosineHill Diameter

f(x,y,z) =

)

{ CosineHillHeight

where r is the distance from the center of the hill

r= \/(!U - xhill)Q +(y — yhill)2 + (2 — Zhill)2~
LinearWithSinusoidalPerturbation If you scale the y coordinate

Yscaled = (y - ymin) / (ymax - ymin) ,
then this returns

flz,y,2) = SinusoidalTempIC _TopLayer BC
+ (StnusoidalTempIC _TopLayer BC' — SinusoidalTempIC _TopLayer BC) (1 — Yscaled)
+SinusoidalTemplIC'_ Perturbation Amplitude
* (cos (mx * SinusoidalTempIC _Horizontal W ave Number)
+ sin (mySinusoidalTempIC _Vertical W aveNumber))

Temperature Trigonometry

flz,y,2)=1— T sin (mc) .
2 Tmazx — Tmin

VelicTemperaturelC
f(z,y,z) = sigma * cos (WwavenumberX (WL)) sin (7 (Y — Ymin) wavenumberY’)
Tmaz — Tmin

where the height of the box is constrained to Ymaz — Ymin = 1.

VelicTemperatureIC _SolB

f(z,y,z) = sigma * cos <7rwavenumbe7'X (:U—xmm)> sinh <7rwavenumbe7'Y <y_ymm)> ,

Tmaz — Tmin T — Tmin

where the height of the box is constrained to ¥maz — Ymin = 1.

112 APPENDIX A. INPUT FILE FORMAT

AnalyticalTemperaturelC First, define

To = T — Tmin
Yo = Y — Ymin
L = ZTmazx — Tmin
H = Ymazx — Ymin
A = L/H
and then compute some intermediate quantities
\T/3 Ra 2/3
1+x5)27% \ 2v/pi

Vo UO/)\
Q = 2¢/A/ (muo)
T, = %eTf((% (1—wo0) v/ Uo/ﬂfo)

I, = 1— ferf (%yo ug/ (A — 900))
T, = 1+ 5(@Q/VA) Vool (s + 1 exp (—zduo/ (40 +4)
T, = §-5@Q/Vm) Voo @ yo)exp (= (A= 0)’ vo/ (8 — 4yo))
g = To+Ti+T,+Ts—15
The result is
0 g<0
flay,z) =9 9 0<g<1
1 g>1

SinusoidalExtension
flz,y,2) = Sinusoidal ExtensionVelocity + Sinusoidal Extension Amplitude

% cos (2mSinusoidal ExtensionFrequency (t + dt — Sinusoidal ExtensionPhaseShift))

StepFunction This function returns a ramp function in the axis prescribed by the integer Step FrunctionDim,
where 0 = z, 1 = y, 2 = 2. Defining some convenient constants

wo = coord[dim)]
w_ = StepFunctionLowerOf fset
wy = StepFunctionUpperOf fset |
V_ = StepFunctionLowerV alue
Vi, = StepFunctionUpperV alue

if StepFunctionLessThan is True, then

V_ w < w_
fayz) = Vor (V= Vo) (22) wo <w<wy
7 wy < w
otherwise it is reversed
Vi w< w_
fay2) = Vot (Vi = Vo) (52) wo<w<w,
V_ wy < w

StepFunctionProductl Using a similar scheme as StepFunction to specify the dimension with
StepFunctionProductl Dim,

0 w < StepFunctionProduct1Start
flz,y,2) =< StepFunctionProductlValue StepFunctionProductlStart < w < StepFunctionProductl End
0 w > StepFunctionProductl End

A.14. VERBOSITY OPTIONS 113

StepFunctionProduct?2
StepFunctionProduct3

StepFunctionProduct4 These are the same as StepFunctionProductl except that they use different vari-
ables (e.g., StepFunctionProduct2Dim instead of StepFunctionProductlDim).

Gaussian
GaussianCenter — coord[GaussianDim]\”
f(z,y,2) = (GaussianHeight) exp | — (Hssan egaeJSSiSZ(I)/;iEitzusszan zm])]
TemperatureProfile
Ty y > mazy
fz,y,2) = To + A(mazY —y) + B (1 —exp (—C (mazY —y))) y < mazY,Hy <0
min (Tm,TO + @ (mazY —y)+ B (1 — exp (—C (maxy — y)))) y < max¥,Hy >0
where
H = min (H,,,H, + 2dH |z — z.| / (maz X — minX)),
and
Ty = TemperatureProfileTop,
A = TemperatureLinearCoef ficient,

B = TemperatureExponentialCoef ficientl,
C = TemperatureExponentialCoef ficient2,
T, = TemperatureProfileMax,
Hy = TemperatureProfileHO,
H,, = TemperatureProfileHm,
dH = TemperatureProfiledH,
. = FEaxtensionCentreX.

Filel,...,File10 This reads Filel_N elements from Filel_Name. The format is two columns, with the first
column being the coordinate along the direction Filel_Dim and the second being the value. The
coordinates must be sorted and increasing. Gale linearly interpolates between values as necessary. So
a file with the two lines

0 10
100 20

will create a linear gradient between 0 and 100.

A.14 Verbosity Options

By default, Gale prints out very little when running. To get more information, insert

<param name="journal.info">True</param>
<param name="journal.debug">True</param>
<param name="journal-level.info">2</param>
<param name="journal-level.debug">2</param>

into the variables section (see Section |[A.1.4). This will print out more information than you need about
the components, the solvers, and the number of iterations. In addition, you can get even more information
about the solvers from PETSc by appending ”-ksp_monitor” to the command line.

114 APPENDIX A. INPUT FILE FORMAT

Appendix B

Output File Format

Gale outputs two types of files: VTK files for data analysis and visualization, and checkpointing files for
restarting a run.

B.1 VTK Files: .vts, .pvts, .vtu, and .pvtu (Visualization)

These files are output by the Underworld_VTKOutput plugin. The .vts and .pvts files contain information
about quantities on the grid, and the .vtu and .pvtu contain information about quantities on the particles.
Every processor outputs its own .vts and .vtu file, and the .pvts and .pvtu are small files that have
information on how to stitch them all together. Ordinarily, you would only open the .pvts and .pvtu
files. These files are in a format understood by a wide variety of visualization programs, such as ParaView
(paraview.org) (recommended) or MayaVi (mayavi.sf.net|). Vislt (www.11lnl.gov/visit) can understand
the raw .vts and .vtu files, but not the .pvtu and .pvts files. So Vislt is mostly useful for visualizing
serial runs.
The Underworld_VTKOutput plugin is activated by adding the lines

<struct>
<param name="Type">Underworld_VTKOutput</param>
<param name="Context">context</param>

</struct>

to the list of plugins. This line is already in the example input files.
The particle files can get quite large. Many times, you do not need to see every single particle. You can
configure Gale to only output every Nth particle by setting particleStepping to N.

|
|

’ Defaults \
’ particleStepping \ 1

B.2 Checkpoint Files: .h5, .dat and .xmf

These files are mostly useful for checkpointing. They are in a machine dependent format and have the bare
minimum needed to restart the run.

115

paraview.org
mayavi.sf.net
www.llnl.gov/visit

116 APPENDIX B. OUTPUT FILE FORMAT

Appendix C

Benchmarks

Gale has been tested against a number of different benchmarks. Each benchmark tests different parts of the
code, although there is some overlap. Specifically, Table summarizes which parts of the code are tested
by which benchmark.

’ Code Functionality \ Benchmark Section ‘
Stokes solver and interpolate between particles and mesh in 2D |C.2HC.3L C.4{,|C.5 C.6I, m

Stokes solver and interpolate between particles and mesh in 3D C.1[C4
Time stepping JQEDQG C.ZI_
Gravity |C.1 C.3|[C.6 C.7|
Free surface C.3|C.6 [C.7]
Drucker Prager rheology in 2D C.5, |C.6} [C.7]

Table C.1: Summary of which parts of the code are tested by which benchmarks

With the exception of the GeoMod benchmarks (Sections and |C.7)), the benchmarks can be carried
out to high precision (71%). In particular, the error should follow the relation

error o< h+ O(h?),

where h is the size of the element. This means that if we plot the error from three different resolutions
(high, medium and low) and scale it by h, we should see that the high-resolution error is closer to the
medium-resolution error than the low-resolution error. In practice, this may be difficult to achieve because
there are almost always other sources of error besides resolution.

Altogether, these benchmarks give us a high degree of confidence in the code.

C.1 Falling Sphere

This benchmark simulates a rigid sphere falling through a cylinder filled with a viscous medium as in Figure

C1

117

118 APPENDIX C. BENCHMARKS

=SS

=S

Figure C.1: Schematic of a Sphere falling through a Cylinder

The file
input/benchmarks/falling_sphere/README

has instructions on running this benchmark. In an infinitely large cylinder, the analytic solution for the drag
on a sphere is

F = 6mnru,

where 7 is the viscosity of the medium, r is the radius of the sphere, and u is the velocity of the sphere.
Conversely, the buoyancy force is

4 .
F= gﬂ'rdg(Sp,

where ¢ is the gravitational constant and dp is the density difference between the sphere and the medium.
Balancing these two forces and solving for the velocity gives

2
u= =r*8p/n.
Setting g =1, r =1, dp = 0.01, and n = 1 gives a velocity of
u = 0.00222.

In our case, we simulate a rigid sphere with a high viscosity sphere. This allows some internal circulation
within the sphere, and so the expression for the velocity becomes [9]

1r2g0p n+ '
U=z 3,17
3 N n+3n

where 7’ is the viscosity of the sphere. For our case, the background medium’s viscosity is 1 and the sphere’s
viscosity is 100, so the correction is about 1%.

When the boundaries are not infinitely far away, we can expand the solution in terms of the ratio of the
radius of the sphere (r) to the radius of the cylinder (R). One solution by Habermann [I2] gives a drag force
of

1-0.75857 - (%)°
L+ fu(f)

Fy = 6mnru

where

C.1. FALLING SPHERE 119

fu (%) — —2.1050(r/R) + 2.0865(r/R)® — 1.7068(r/R)® + 0.72603(r/R)°.
For our case with r = 1, R = 4, this gives a velocity of

w=1.122747319 - 1073.

The walls reduce the speed by about a factor of two.
Another solution by Faxen [12] gives a drag force of

Fr = 6mnru/ (1 + fr(r/R)),

where

fr(r/R) = —2.10444(r/R) + 2.08877(r/R)* — 0.94813(r/R)®
~1.372(r/R)® + 3.87(r/R)® — 4.19(r/ R)*°.

For our case, this gives a speed of

u = 1.12293603939 - 1073,

which agrees closely with the result from Habermann.

Another possible artifact is that we do not simulate an infinitely long cylinder. This turns out to be a
small effect. We use a cylinder with a height of 8, and place the sphere halfway down. We did runs where
the cylinder was twice as tall, and the results were essentially unchanged.

Since we do not precisely track the surface of the sphere, there is some ambiguity as to where the sphere
ends and the background medium begins. The sphere viscosity is 100 and the background viscosity is 1, so
we decide, somewhat arbitrarily, to define the sphere to be those cells where the viscosity is greater than 99.
Also, because we are simulating a high viscosity sphere rather than a completely rigid sphere, the velocity
inside the sphere is not uniform. The error bars indicate the variation in velocity across the sphere.

The errors in the computed velocity compared to the Faxen solution are plotted in Figure [C.2] These
were done with resolutions of 8 x16x8, 16x32x16, 32x64x32, and 64x128x64, corresponding to grid sizes
(h) of 0.5, 0.25, 0.125, and 0.0625. Because of the symmetries of the problem we only have to simulate a
quarter of the domain. As h decreases, the error decreases. It does not decrease linearly with h, suggesting
that some other factor is contributing to the error (e.g. the finite viscosity of the sphere).

120 APPENDIX C. BENCHMARKS

Relative Error
o
IS
T
—_—
1

Figure C.2: Relative Error in computed velocity vs. resolution

C.2 Circular Inclusion

Schmid and Podladchikov [8] derived a simple analytic solution for the pressure and velocity fields for a
circular inclusion under simple shear as in Figure [C.3]

[/ PANANAN

S/ TV
NN S

NN/

Figure C.3: Schematic for the circular inclusion benchmark

C.2. CIRCULAR INCLUSION 121

The file input/benchmarks/circular_inclusion/README has instructions on how to run this bench-
mark.

Because of the symmetry of the problem, we only have to solve over the top right quarter of the domain.
For the velocity boundary conditions, the analytic solution is a bit complicated. So we used the simple
relation

Vg = —€Y,

vy = €,

for the boundaries, where é = 1 is the magnitude of the shear and x and y are the coordinates. This induces
an error of order r?/r?, where r; = 0.1 is the radius of the inclusion, and r is the radius. We have the
boundaries at 80 times the radius of the inclusion, giving an error of about 0.01%, which is much smaller
than the other errors we are looking at. Just to make sure, we did runs with the boundaries at 40 times the
radius of the inclusion and got very similar results.

A characteristic of the analytic solution is that the pressure is zero inside the inclusion, while outside it
follows the relation

- 2
D = 4éw% cos (20)
i Hm r

where p; = 2 is the viscosity of the inclusion and g, = 1 is the viscosity of the background media. Many
numerical codes that solve Stokes flow (Eq. and 7 including Gale, assume that pressure, velocity, and
viscosity are continuous. The pressure discontinuity at the surface of the inclusion violates that assumption,
so the error tends to concentrate near the surface of the inclusion.

Figure plots the error in the pressure along the line y = x/2 for different resolutions. Inside the
inclusion near the surface, the pressure is consistently wrong. The pressure does not converge with higher
resolution, giving us a clue that the numerical scheme is not completely accurate.

0.60

-010
0.00 0.02 Q.04 Q.06 0.08 0.10 012 0.14 0.16 0.1g 0.20 0.22 0.24 0.26 Q.28

Figure C.4: Pressure along the line y = /2 for resolutions of 128 x128 (blue), 256x256 (red), and 512x512
(black). The inclusion has a radius r; = 0.1. Note that the pressure should be zero inside the inclusion, but
the numerical solutions consistently underestimate the pressure.

Outside the inclusion, the error is better behaved. Figure plots the error in the pressure along the
line y = /2 outside the inclusion for different resolutions. While there are still problems near the surface,
away from the surface the solutions are quite good. Figure [C.0] zooms in on the error farther out, and we
can see that the error scales continues to reduce with resolution. This gives us confidence that, at least away
from the inclusion, the code is giving the right answer. This kind of result, where the solution is bad close
to the surface, but good otherwise, is typical for numerical solutions of this problem [13].

122 APPENDIX C. BENCHMARKS

£.00e-03

6.00e-03

4.00e-03

2.008-03

0.0
0.00 0.05 0.10

Figure C.5: Error in the pressure outside the inclusion along the line y = x/2 for resolutions of 128x128
(blue), 256x256 (red), and 512x512 (black). The inclusion has a radius r; = 0.1.

1.60e-03

1.40e-03

1.200-08

1.208-08

1010808

1.00e-08

9.00e-04

8.00e-04

7.00e-04

6.00e-04
00D,
4.00e-04 .""h-“'~——-___

3.00e-04 """'---..--.__ —————————

——m—— —— e e
200604 L LT T e e e e e
pe— ——— e

e

1.00e-04

000

Figure C.6: As in Figure but zoomed in on a part a little away from the inclusion.

C.3 Relaxation of Topography

Given an infinitely deep purely viscous medium with an infinitesimal initial sinusoidal height profile, the
topography will decay exponentially with the timescale [10]

_4my
T gL’

where 7 is the viscosity, g is the gravitational constant, and L is the wavelength of the initial sinusoid.

In our case, we simulate a medium with non-infinite depth (depth=L) and a sinusoid with a non-zero
amplitude (A = 0.01). The internal fields decay exponentially with depth with a length scale of L/27, giving
an error of 0.2%. A non-zero amplitude creates errors of order (2rA/L)?, which in this case is 0.4%.

The file input/benchmarks/sinusoid/README explains how to run this benchmark. Figure shows
the results of a high-resolution run. This run is relatively large (512x1024), because we need fairly high
resolution to be able to accurately resolve the small (1%) height difference. Also note that we use symmetry
to only simulate half of the wavelength.

C.3. RELAXATION OF TOPOGRAPHY 123

Figure C.7: Strain rate and velocities for a sinusoidal topography relaxing under gravity

Running the code with multiple resolutions and measuring the error in the height in the trough gives
Figure [C.8] Scaling the error with resolution gives Figure [C.9] The error decreases linearly with increasing
resolution, giving us confidence in our ability to accurately track topography.

124

0.00018

APPENDIX C. BENCHMARKS

0.00016 | 512x1024 -

0.00014 -

0.00012 -

0.0001

8e-05

6e-05

4e-05 |-

2605

ol

0 05

Figure C.8: Error in the height at the trough

0.00018

128256 ——
256x512

000016 | 512x1024 -

0.00014 -

0.00012 -

0.0001

8e-05

6e-05 -

4005 |-

2005 |-

0

L
0 05

Figure C.9: As in Figure but with the error scaled with h. So the medium-resolution error is multiplied
by 2 and the high-resolution error is multiplied by 4.

C.4 Divergence

This benchmark tests the implementation of the divergence term in equation[2.8] In 2D, a constant divergence
is applied to a square domain, and the velocity on the corners is set to enforce a spreading from the center of
the square. Figure[C.10|shows the velocity and strain rate invariant for a numerical solution. For a constant
divergence d, the analytic solution for this setup is

In 3D, the analytic solution is

Vg
Uy

Vg
Uy
Uz

x-df2
y-d/2 -’

= x-d/3
= y-d/3 .
= z-d/3

In both cases, the strain rate invariant equals y/d/2. As shown in Figure [C.11] the main source of error
in 2D comes from inaccuracies in the solver. Figure [C:12| paints a different picture in 3D, where the main
source of error comes from having a finite number of particles.

C.4. DIVERGENCE 125

= StrainRatelnvariant
1.000014

V. W e

0

1.00001

0.99999
0.999987

Figure C.10: Velocity and Strain Rate Invariant solution for the 2D Divergence benchmark. The variation
in the strain rate invariant is uniformly small.

126

Maximum StrainRate Error

0.0001 [

1e-05

1e-06

1e-07

1e-08

1e-09

1e-09

APPENDIX C. BENCHMARKS

1e-08

1e-07 1e-06 1e-05
Solver Tolerance

Figure C.11: Maximum error in the strain rate invariant for the 2D Divergence benchmark vs tolerance in
the linear solver. The resolution is kept at 32x32, and the number of particles per cell is kept at 30.

Maximum StrainRate Error

01

0.01

0.001

0.0001
0

100 150 200 250
Particles per Cell

Figure C.12: Maximum error in the strain rate invariant for the 3D Divergence benchmark vs the number
of particles in each cell. The resolution is kept at 16x16x16, and the tolerance in the linear solver is kept

at 1077.

C.5. DRUCKER-PRAGER 127

C.5 Drucker-Prager

C.5.1 Analytic Treatment

For the Drucker-Prager rheology in 2D, we can write the yielding relation as
Ons = Opp tanp + C,

where 0, is the shear stress perpendicular to the fault plane, o,, is the shear stress parallel to the fault
plane, ¢ is the internal angle of friction, and C' is the cohesion. Decomposing this into principal stresses oy,
Orr, and Orrr giVGS

sin (20) (o1 — oy11) /2 = tang ((o1 + or11) /2 + cos (20) (o1 — o111) /2) + C,

where © is the angle that the fault makes relative to the maximum shear stress. Assuming that the fault
forms where the shear stress oy — oyr; is a minimum, a little algebra gives us

0=+(5+9)

Using this, we can construct a simple plasticity experiment and make sure that Gale gives the correct faulting
angle.

C.5.2 Model Setup

We performed a shortening experiment as shown in Figure We only solve the Stokes equation and
look at the strain rate invariant to find incipient faults. We do not take any time steps, removing any
confounding effects they may cause. We made the weak region have a resolvable size, because faults arising
from unresolved weak regions always tend to be at 45° [I§].

free surface

v=1

-6

viscosity=10

Figure C.13: The setup for the shortening experiment. The box is 1 unit on a side, and the low viscosity
region has a radius of 0.01 (its size is exaggerated).

128 APPENDIX C. BENCHMARKS

C.5.3 Numerical Results

Figure [C:14] shows the results for two different resolutions for ¢ = 45. The uncertainties in measuring the
fault angle are far larger than the differences between the two resolutions.

On the other hand, Figure[C.I5|shows results for when we vary the maximum strain rate. If the maximum
strain rate is too low, then the fault angles are no longer correct. Setting the maximum strain rate to a more
moderate value (10), on the other hand, does not seem to affect the fault angle for this case. However, if we
look at a different friction coefficient in Figure [C.16] then the fault angles are wrong.

Similarly, Figure[C.I7]shows results for when you vary the minimum viscosity. With a very high minimum
viscosity, faults do not develop. With a little lower setting, faults do develop, but not at the correct angle.
With a still lower setting, the angles become correct, but the structure still differs markedly from the result
with unconstrained minimum viscosity. It is only with the lowest setting that the structure converges to the
unconstrained answer.

Figure [C.1§ shows a plot of the numerical vs. analytic results for several different angles. This gives us
confidence that, at least in compression in 2D, our Drucker-Prager implementation gives the correct results.

STroinRoTeInvrin’r

2 4 6 8
LULLELUL UL

0.001 10

Figure C.14: Strain rate invariant for the yielding experiment with ¢ = 45 with two different resolutions:
128x128 and 256x256. Any differences in the fault angle between the two resolutions are swamped by
uncertainties in determining the overall angle of faulting.

StrainRatelnvariant

2\\\\\\\\?\\\\\\\\\?\\\\\\\\8
0.001 10

Figure C.15: Strain rate invariant for the yielding experiment with three different maxStrainRate’s: 1, 10,
00. The resolution for all three cases is 256 x256. The highest strain rate observed in the case for an infinite
maxStrainRate is 74.

C.5. DRUCKER-PRAGER 129

StrainRatelnvariantField
4 6 8
IRRNMRRRRRRREA SRRRRRR
0.001 10

Figure C.16: Strain rate invariant for the yielding experiment with maxStrainRate’s of 10 and co but with
a friction angle ¢ = 37°. The resolution for both cases is 256 x256.

StrainRatelnvariant

? IH\HHT\I\HHHT\IHHH i

0.001 10

Figure C.17: Strain rate invariant for the yielding experiment with four different minimumViscosity’s:1075,
1076, 1077, 1078, The resolution for all three cases is 256 x256.

130 APPENDIX C. BENCHMARKS

70 T T T T T T T

65 - E

55 —

50 - E

45 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50

Figure C.18: Numerical vs analytic results for fault angles as a function of internal angle of friction.

C.6 Geomod 2004

Two benchmarks were created to validate numerical codes against analog sandbox experiments [I1]: one
benchmark simulates extension, and the other simulates shortening. A number of investigators with different
codes ran these benchmarks, giving us a good standard against which to compare.

C.6.1 Extension

This benchmark simulates a sandbox being extended as in Figure[C:19] The right side and half of the bottom
are translated to the right. This creates a velocity discontinuity at the center which is the initial seed for
localization. Gale’s implementation of this benchmark is in input/benchmarks/extension.xml.

Like half of the codes in the benchmark, boundary friction was not included. Rather, the material is held
fixed to the bottom boundary, and the velocity discontinuity is smoothed over 0.2 cm. In addition, the exact
background viscosity is not prescribed by the benchmark. We have used 10'2Pq - s, the same as used in the
I2ELVIS calculations. This value is somewhere in the middle of the range of values used in the calculations
for other codes.

Figure shows the results for different values of minimumViscosity and maxStrainRate (see Section
. Runs with a minimum viscosity of 10* and a maximum strain rate of 5-10~* do not lose any significant
details while improving solver performance. Figure shows the results for different resolutions. The code
is still not quite convergent, probably because we chose maxStrainRate such that it did not lose any details
on the 512x128 grid.

A comparison against the other codes is in Figure[C.22] While it is difficult to perform exact comparisons,
Gale produces similar fault patterns.

C.6. GEOMOD 2004 131

)) Mobile
(b) Extension experiment vertical wall
1.0 cm sand
1.0 cm sand
1.0 cm sand
il h_l—‘—“— roid sheet
5cm / 10cm 5cm

moving velocity discontinuity

Figure C.19: Extension model setup. Reproduced, with permission, from Buiter et al. [IT].

Figure C.20: Strain rate invariant for the extension model for varying 7,,;, and €,,,,. From top to bottom,
they are: Nmin = 1057 €maz = O 10_4; Nmin = 1057 €maz = 2 10_3; Tmin = 1047 €maz = O 10_4; Nmin = 1047
€maz = 2~ 1073; Nmin = 1033 €maz = O - 1074; Nmin = 1037 €maz = 2~ 1073;

132 APPENDIX C. BENCHMARKS

Figure C.21: Strain rate invariant for the extension model after 5 cm of extension for four different resolutions:
128x16, 256x32, 512x64, and 1024x128.

C.6. GEOMOD 2004 133

Microfem

10 15 20 25 cm
Gale TVD

O_

10-8 10-3

Figure C.22: Strain rate invariant for the numerical extension models after 5 cm of extension. The resolutions
of the various models are: I2ELVIS: 400x75, LAPEX-2D: 301x71, Microfem: 201x61, SloMo: 401x71,
Sopale: 401x71, Gale: 1024x128. Upper images reproduced, with permission, from Buiter et al. [IT].

134 APPENDIX C. BENCHMARKS

(a) Shortening experiment Mobile
vertical wall

10cm

sand

1.0 cm sand
0.5 cm sand
1.0 cm sand

0.5 cm microbeads

Velocity
Kdiscontinuity

Figure C.23: Shortening model setup. Reproduced, with permission, from Buiter et al. [11].

C.6.2 Shortening

This benchmark simulates a sandbox being shortened as in Figure[C.23] The right side is moved to the left,
creating a velocity discontinuity at the bottom right corner. Gale’s implementation of this benchmark is in
input/benchmarks/shortening.xml.

As with the extension benchmark, we used values of 10 for minimumViscosity and 5-10~% for maxStrainRate.
Unlike some of the other codes in the benchmark, we did not apply diffusion to the top surface. Without
diffusion, steep slope angles develop, leading to landslides. Landslides occur over a very short time and length
scale, posing particular difficulties for solvers. The minimumViscosity setting moderated these landslides,
so explicit diffusion was not needed.

A comparison against the other codes’ calculations at 14 cm of cumulative shortening is in Figure
There is more variance among the different codes, so it is difficult to tell whether Gale’s behavior agrees with
the other codes. Figure [C.25] shows a run with a few different resolutions, and even there we see marked
differences in behavior as we increase resolution.

C.6. GEOMOD 2004 135

I2ELVIS

LAPEX-2D

Microfem

Sopale

14 cm

strain-rate (s™)

10-8 103

Figure C.24: Strain rate invariant for the numerical shortening models after 14 cm of shortening. The
resolutions of the various models are: 12ELVIS: 900x 75, LAPEX-2D: 35171, Microfem: 201x36, Sopale:
401x71, Gale: 512x128. The upper portion of the figure is reproduced, with permission, from Buiter et al.

[11].

136 APPENDIX C. BENCHMARKS

Figure C.25: Strain rate invariant for the shortening model after 14 cm of shortening for three different
resolutions: (a) 128x32, (b) 256x64, and (c) 512x128.

C.7 Geomod 2008

Using the lessons learned from the Geomod 2004 benchmarks, new benchmarks were created that would
make it easier to compare numerical experiments with each other and with analog experiments [16].

C.7.1 Stable Wedge

This benchmark simulates a wall pushing a wedge as in Figure There is an analytic solution [I7] which
details what the friction on the bottom and sides should be to provide enough resistance so that the wedge
does not collapse under its own weight, but not so much as to cause any internal deformation as it slides.
The derivation of the solution assumes that the friction along the sides has no cohesion. So the force at the
tip will go to zero as the thickness of the material goes to zero. However, analog experiments suggest a finite
cohesion, so this benchmark specifies a boundary cohesion.

C.7. GEOMOD 2008 137

We modeled the wedge using a relatively low viscosity (1Pa-s) air layer on top. This low viscosity region
does not, for the most part, affect the dynamics. We did not set minimumViscosity or maxStrainRate.

We modeled boundary friction by first fixing the sand to the boundary. We then modify the material
properties in the element next to the boundary so that it provides the correct resistance. So in the bulk,
the sand’s internal angle of friction is 36 weakening to 31, while in the element at the boundary the internal
angle of friction is 16 weakening to 14. Similarly, in the bulk, the cohesion is 10 Pa, while at the boundary
the cohesion is 10 Pa weakening to 0.01 Pa. If we do not weaken the cohesion, when we try to model an
unstable wedge by reducing the internal angle of friction, the wedge never collapses on itself.

Figure [C.27] shows the strain rate invariant after the wall has moved 4 c¢m, and Figure [C.2§] shows the
particles. The bulk translates with almost no deformation, although, as expected, the tip deforms. The odd
structures at the tip are below the grid resolution.

mobile
wall

v=25cm/h

3cm
all quartz sand (¢, C)

B=0° v no exit slot

<4
<

8.24 cm

Figure C.26: Set up for the stable wedge benchmark. Image courtesy of Susanne Buiter.

StrainRatelnvariant
1e-03

e-04

:1e-06

|
1e-08

Figure C.27: Strain rate invariant for the stable wedge benchmark within the wedge. Outside the wedge,
the strain rates are large because of the air’s low viscosity. The resolution is 256x64, and the wedge has
translated 4 cm.

138 APPENDIX C. BENCHMARKS

Figure C.28: Material particles for the stable wedge benchmark. Deformation at the tip is caused by a finite
boundary cohesion. The odd structure at the tip is the result of the finite air viscosity, although the actual
structure is not well resolved. The resolution is 256x64, and the wedge has translated 4 cm.

C.7.2 Unstable Shortening

This benchmark simulates a wall pushing against a wall of sand as in Figure[C.29] There are three layers of
sand, with the middle layer being a little heavier and sticking a little more to the boundary. Figures

and show results for different resolutions.

Mobile
vertical wall 2.5cm/h
1.0 d «
Adcm quartz san
<
1.0 cm corundum sand
1.0 cm quartz sand noexliiot

35cm

Figure C.29: Set up for the unstable shortening benchmark. Image courtesy of Susanne Buiter.

C.7. GEOMOD 2008 139

StrainRatelnvariant

||'\?|_06 [||||'ﬁ|_

1.e-08 1.e-02

Figure C.30: Strain rate invariant for the unstable shortening benchmark at 10 cm of shortening with
resolutions of 128x32, 256 x64, and 512x128.

140 APPENDIX C. BENCHMARKS

Figure C.31: Material particles for the unstable shortening benchmark at 10 cm of shortening with resolutions
of 128%x32, 256x64, and 512x128.

C.7. GEOMOD 2008 141

Integrated Strain

025 05 075
‘IIIH\IH‘IIIIIIII\‘\
.l

Figure C.32: Integrated strain for the unstable shortening benchmark at 10 cm of shortening with resolutions
of 128%x32, 256x64, and 512x128.

C.7.3 Brittle Shortening

This benchmark is very similar to unstable shortening. The only difference is that part of the bottom is
also moving along as shown in Figure [C.33] This causes the deformation to start from inside the sand box,
rather than along the walls. Figures[C.34] [C.35] and [C.36] show results for different resolutions.

35cm y
Mobile «
vertical wall I
1.0 cm quartz sand I <t
1.0 cm corundum sand
1.0 cm quartz sand
D 23 cm e 12 cm \ "~ no exit slot
moving velocity discontinuity rigid sheet with

Alkor foil on top

Figure C.33: Set up for the brittle shortening benchmark. Image courtesy of Susanne Buiter.

142 APPENDIX C. BENCHMARKS

StrainRatelnvariant

]Hﬁ_Oé Il -\||'ﬁ|_04

1.e-08 1.e-02

Figure C.34: Strain rate invariant for the brittle shortening benchmark at 10 cm of shortening with resolutions
of 128x32, 256x64, and 512x128.

C.7. GEOMOD 2008 143

Figure C.35: Material particles for the brittle shortening benchmark at 10 cm of shortening with resolutions
of 128%x32, 256x64, and 512x128.

144 APPENDIX C. BENCHMARKS

Integrated Strain
0.25 75

Figure C.36: Integrated strain for the brittle shortening benchmark at 10 cm of shortening with resolutions
of 128%x32, 256x64, and 512x128.

Appendix D

License

GNU GENERAL PUBLIC LICENSE Version 2, June 1991. Copyright (C) 1989, 1991 Free
Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, M A 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software —
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps:

1. Copyright the software, and
2. Offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

145

146 APPENDIX D. LICENSE

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS
FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program" be-
low refers to any such program or work, and a "work based on the Program" means either the Program
or any derivative work under copyright law: that is to say, a work containing the Program or a portion
of it, either verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification.") Each licensee is addressed as
"you."

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(c¢) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

147

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

(¢) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automati-
cally receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

148

10.

APPENDIX D. LICENSE

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version," you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11.

12.

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

149

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found. For example:

One line to give the program’s name and a brief idea of what it does. Copyright © (year) (name
of author)

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSO-
LUTELY NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they
could even be mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which
makes passes at compilers) written by James Hacker.

(signature of Ty Coon)
1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

150 APPENDIX D. LICENSE

Bibliography

(1]

2]

3]

[4]

[5]

[6]

7]

18]

19]
[10]
[11]

[12]

[13]

[14]

[15]

Fullsack, Phillipe (1995). An arbitrary Lagrangian-Eulerian formulation for creeping flows and its ap-
plication in tectonic models, Geophys. J. Int., 120, 1-23.

Quenette, S., B. Appelbe, M. Gurnis, L. Hodkinson, L. Moresi, and P. Sunter (2005), An Investigation
into Design for Performance and Code Maintainability in High Performance Computing, ANZIAM J.,
46(e), C1001-C1016.

Moresi, L.N., F. Dufour, and H.-B. Miihlhaus (2003), A Lagrangian integration point finite element
method for large deformation modeling of viscoelastic geomaterials, J. Comp. Phys., 184, 476-497.

Moresi, L.N.; and H.-B. Miihlhaus (2006), Anisotropic viscous models of large-deformation Mohr-
Coulomb failure, Philosophical Magazine, 86(21), 3287-3305.

Moresi, L.N., and V.S. Solomatov (1995), Numerical investigation of 2D convection with extremely large
viscosity variations, Phys. Fluids, 7(9), 2154-2162.

O’Neill, C., L. Moresi, D. Miiller, R. Albert, and F. Dufour (2006), Ellipsis 3D: a particle-in-cell finite
element hybrid code for modelling mantle convection and lithospheric deformation, Comput. Geosci.
32(10), 1769-1779.

Zhong, S., M.T. Zuber, L.N. Moresi, and M. Gurnis (2000), The role of temperature-dependent viscosity
and surface plates in spherical shell models of mantle convection, J. Geophys. Res., 105, 11,063-11,082.

Schmid, D.W., and Y.Y. Podladchikov (2003), Analytical solutions for deformable elliptical inclusions
in general shear, Geophys. J. Int., 155, 269-288.

Landau, L.D., and E.M. Lifshitz (1987), Fluid Mechanics, Pergamon Press, 61-62.
Johnson, A.M., and R.C. Fletcher (1994), Folding of Viscous Layers, Columbia University Press, 19.

Buiter, S.J.H., and A.Y. Babeyko, S. Ellis, T.V. Gerya, B.J.P. Kaus, A. Kellner, G. Schreurs, and
Y. Yamada (2006), The numerical sandbox: comparison of model results for a shortening and an
extension experiment, Analogue and Numerical Modelling of Crustal-Scale Processes, 253, edited by
S.J.H. Buiter and G. Schreurs, pp. 29-64, Geological Society, London, Special Publications, doi:
10.1144/GSL.SP.2006.253.01.02.

Lindgren, E.R. (1999), The Motion of a Sphere in an Incompressible Viscous Fluid at Reynolds Numbers
Considerably Less Than One, Physica Scriptae, 60, 97-110.

Deubelbeiss, Y., and B.J.P. Kaus (2007), A comparison of finite difference formultions for the Stokes
equations in presence of strongly varying viscosity, poster presented at 2007 AGU.

Dohrmann, C., and P. Bochev (2004), A stabilized finite element method for the Stokes problem based
on polynomial pressure projections, Int. J. Num. Meth. Fluids., 46, 183-201

Elman, H.C., D.J. Silvester, and A.J. Wathen (2005), Finite Elements and Fast Iterative Solvers: with
Applications in Incompressible Fluid Dynamics, Oxford University Press

151

152 BIBLIOGRAPHY

[16] Buiter, S., and G. Schreurs, http://www.geodynamics.no/benchmarks/benchmark-annum2008.html

[17] Dahlen, F.A. (1984), Noncohesive Critical Wedges: An Exact Solution, J. Geophys. Res., 89, B12,
10125-10133

[18] Kaus, B.J.P. (2009), Factors that control the angle of shear bands in geodynamic numerical models of
brittle deformation, Tectonophysics, 484, 36-47

[19] Buck, W.R., L.L. Lavier, and A.N.B. Poliakov (2005), Modes of faulting at mid-ocean ridges, Nature,
494, T19-723

[20] Hilley, G.E. and M.R. Strecker (2004), Growth and erosion of fold-and-thrust belts with an
application to the Aconcagua fold-and-thrust belt, Argentina, J. Geophys. Res., 109, B01410,
doi:10.1029,/2002JB002282

	Preface
	Who Will Use Gale?
	Citation
	Support
	Gale History

	Introduction
	About Gale
	Gale Computational Approach and Governing Equations
	Infrastructure
	Units
	Basic Equations
	Gravity
	Divergence Forces
	Rheology
	Temperature
	Numerical Solution
	Artificial Compressibility
	Scaling
	Hydrostatic Pressure
	Uzawa Algorithm

	Installation and Getting Help
	Introduction
	Binaries
	Building from Source
	System Requirements
	Dependencies
	Downloading the Code
	Source Code Repository (Experts Only)

	Support

	Running Gale
	Basic Usage
	Advanced Usage
	Drucker-Prager Rheology
	Direct Solvers
	Multigrid
	Command-Line Parameters
	Checkpointing
	Debugging Input Files

	Output and Visualization
	Basic Visualization with ParaView
	Visualizing Movies with Paraview
	Generating CSV files

	Gauging Accuracy

	Cookbooks
	Introduction
	Adding Lines to the Template File
	Adding Variables to the Template File

	Viscous Material
	Viscous Material in Simple Extension
	Viscous Material with Complex Boundaries
	Viscous Material with Boundary Conditions Read From a File
	Viscous Material with Inflow/Outflow Boundaries
	Viscous Material in Extension with Normal Stress Boundaries
	Viscous Material with Deformable Bottom Boundary
	Viscous Material with Initially Deformed Upper Boundary
	Viscous Material with Fixed, Deformed Bottom Boundary
	Hydrostatic Term
	Multiple Viscous Materials
	Yielding Material in Simple Extension
	Thermal Convection
	Power Law Creep

	Geologic Example
	Modifying Gale
	Introduction
	Software Components of Gale
	StGermain
	PETSc
	StgFEM
	PiCellerator
	UnderWorld

	System Description
	Sample Rheologies
	Simple Viscous

	Standard Condition Functions

	Input File Format
	Structure
	Components
	Plugins
	EulerDeform

	Initial and Boundary Conditions
	Variables

	Basic Components
	Temperature components
	Shapes
	BelowCosinePlane
	BelowPlane
	Box
	ConvexHull
	Cylinder
	Everywhere
	PolygonShape
	Sphere
	Superellipsoid

	Materials
	StoreVisc and StoreStress
	Viscous
	MaterialViscosity
	Frank-Kamenetskii
	Arrhenius
	NonNewtonian

	Yielding
	StrainWeakening
	VonMises
	DruckerPrager
	FaultingMoresiMulhaus2006

	Boundary Conditions
	Velocity Boundary Conditions
	Flux Boundary Conditions
	Stress Boundary Conditions
	Temperature Boundary Conditions
	Deformed Upper and Lower Boundaries
	Erosion
	Diffusion
	HRS Erosion

	Solver Parameters
	Fixing Internal Degrees of Freedom
	Temperature Initial Conditions
	HydrostaticTerm
	Buoyancy Forces
	BouyancyForceTerm
	BuoyancyForceTermThermoChem

	Divergence Forces
	Standard Condition Functions
	Verbosity Options

	Output File Format
	VTK Files: .vts, .pvts, .vtu, and .pvtu (Visualization)
	Checkpoint Files: .h5, .dat and .xmf

	Benchmarks
	Falling Sphere
	Circular Inclusion
	Relaxation of Topography
	Divergence
	Drucker-Prager
	Analytic Treatment
	Model Setup
	Numerical Results

	Geomod 2004
	Extension
	Shortening

	Geomod 2008
	Stable Wedge
	Unstable Shortening
	Brittle Shortening

	License

