COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS (CIG)

ConMan

User Manual
Version 3.0

N\

| AN Y

Temperature

0.0 0.25 050 0.75 0

www.geodynamics.org Scott King

ConMan

Version 3.0

Scott King
John Naliboff 777

Harsha Lokavarapu 777

(©2019 Computational Infrastructure for Geodynamics

January 31, 2020

Contents

CONTENTS

List of Figures

LIST OF FIGURES

Chapter 1

Preface

1.1 Abstract

This manual serves as a user guide for ConMan, a finite element program for the solution of the equations of
compressible and incompressible, infinite-Prandt] number convection in two dimensions originally written by
Arthur Raefsky, Scott King, and Brad Hager (7). Changyeol Lee contributed significantly to the compressible
formulation in this distribution (?). The 3.0 version of ConMan solves the Bousinessq (BA), Extended
Bousinessq (EBA), Trucated Anelastic Liquid (TALA), and Anelastic Liquid (ALA) approximations (7).

ConMan has always been a public domain program and is maintained and distributed by the Computa-
tional Infrastructure for Geodynamics (CIG) geodynamics.org and is made available under the GNU General
Pubic License either version 2 or later.

ConMan is written in FORTRAN making use of FORTRAN’s memory allocation and has been tested
on a variety of linux systems with gfortran and intel fortan compilers. It has been benchmarked against
other existing codes (see Chapter ??7). Yet as with anything free, it comes with no guarantees. The authors
would appreciate any information regarding bugs or potential problems but make no promises regarding the
timeliness of changes or fixes; see Section 77 for instructions on how to report problems.

1.2 Changes Since Version 2.0

There are several significant differences that the user familiar with past versions of ConMan will find in the
3.0 version. First, we removed the clunky memory manager library (a set of routines wrapped around the c
function malloc) and replaced them with FORTRAN 90’s allocate and deallocate functions. This eliminates
many of the compilation problems people experienced with the 2.0 version. Most of these routines were in
files subroutines input and elminp.

As part of a general clean up, we replaced the separate input and elminp (both input subroutines) and
created a new input subroutine. As part of this we removed the ‘element library’ function (eglib.F and eg2.F)
which was a structure originally designed for different formulations 2D Cartesian, 3D Cartesian, spherical
axysymmetric, ...). Because these were never fully developed, it made on sense to retain the cumbersome
structure. We also moved all out the subroutines associated with output, into new output subroutine.
The user does not need to hunt through the time driver subroutine to find out where the specific output
subroutines are called. Thus, subroutines geoid, fluxke, masflx, print, output rheol, print compbm _data,
and stress are all in subroutine output.

We also changed the names of many of the subroutines to take advantage of longer subroutine names
allowed by modern FORTRAN. Thus f tlhs has become form temp matrix, f vres has become form vel-
ocity rhs, f vstf has become form velocity stiffness matrix. Similarly, subroutine timdrv has become
time _driver. As you look through the code there are examples where this could have been carried further.

Second, Picard iteration for the temperature equation is now a runtime option as opposed to a compiler
option. This necessitated specifying both implicit and explicit subroutines for the temperature right hand
side, form _temp rhs_implicit and form temp rhs explicit As well as a form _temp matrix.F for the im-

8 CHAPTER 1. PREFACE

plicit temperature matrix and form temp mass matrix for the lumped mass matrix that has traditionally
been used for the explicit version of the temperature solver.

Third, we added the EBA, TALA, and ALA formulations as described in ?. The compressible formulation
is described in Chapter ??. This required a number of changes throughout the form temperature and
form_velocity subroutines. We provide a test suite that runs a subset of the problems from ? that can be
used to verify the installation version 3.0.

Finally, we have added a cookbook of subduction wedge problems based on problems from the subduction
zone benchmark paper (?) and one based on the compressible convection benchmark paper (?). This required
adding a new 'fault’ subroutine and a subroutine to implement the Batchelor corner flow boundary conditions.
These can be found in the subduct.src directory.

1.3 Introduction

This manual contains all of the necessary information for setting up input and running ConMan. It assumes
some familiarity with the finite element method and FORTRAN. An excellent reference book for more detail
on the finite element method is ?. All of the data structures and bookkeeping arrays in ConMan follow
the conventions in Hughes so for the person who wishes to make extensive use of ConMan, this book is a
worthwhile investment.

This manual is broken up into several parts: it begins with a brief introduction to the finite element
method and the notation that is used throughout the manual and ConMan. There is a discussion of the
equations solved and the material properties including how and where to modify the code. There is also
discussion of some key points concerning the implementation and finally a description of all the input
variables. Within this document the following convention will be followed: subroutine names from ConMan
will be given in bold type, variables from ConMan will be given in italicized type.

1.4 Contributors

ConMan was originally developed by Scott King, Arthur Raefsky, and Brad Hager (?). The grid generation
routines were adapted from DLEARN, a code distributed with ?. Numerous people have contributed to
ConMan and related codes over the past 25 years, including: Louise H. Kellogg and Walter Kiefer (SCAM
- Spherical Convection in an Axisymmetric Mantle), Cinzia G. Farnetani (cylindical version for plumes),
Junan Chen, Steve S. Shapiro (marker chain and field methods), Mark Simons (geoid calculation), Peter
Puster (cylindical version), Don E. Koglin (rheology and plates), Hannah L. Redmond (SCAM - Spherical
Convection in an Axisymmetric Mantle), Peter van Keken (Picard iteration and benchmarking), Changyeol
Lee and Tkuko Wada (compressible formulations and subduction problems). This distribution only includes
the Cartesian version and does not include markers, marker chains or compositional fields. These could
easily be added and I have the older routines if someone it interested in merging those features with the
current code.

1.5 Citation

The ConMan team requests that in your oral presentations and in your papers that you indicate your use of
this code by citing these two papers which describe the methods the code is based on:

e King, S.D., A. Raefsky, and B.H. Hager (1990), ConMan: Vectorizing a finite element code for incom-
pressible two-dimensional convection in the Earth’s mantle, Phys. FEarth Planet. Int., 59, 195-208.

e King S. D., C. Lee, P. E. van Keken, W. Leng, S. Zhong, E. Tan, E.; M. Gurnis, N. Tosi, and M. C.
Kameyama (2010) A community benchmark for 2D Cartesian compressible convection in the Earth’s
mantle, Geophys. J. Int., 180, 73-87, 2010. doi:10.1111/j.1365-246X.2009.04413.x

e King, S. D., A. Raefsky, and B.H. Hager (2020), ConMan v3.0.0 [software|, doi:10.5281 /zenodo.3633152.

1.6. SUPPORT 9

1.6 Support

ConMan is freely available from the Computational Infrastructure for Geodynamics (CIG) (geodynamics.
org) under the GPL 2.0 or later license (Appendix A) in the hope that the software will enhance your
research in geophysics. Maintenance is supported by a grant from the National Science Foundation to CIG,
managed by the University of California at Davis.

Please acknowledge CIG as follows:

e ConMan is hosted by the Computational Infrastructure for Geodynamics (CIG) which is supported by
the National Science Foundation under awards EAR-0949446 and EAR-1550901.

ConMan code was donated to CIG in June 2008.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National Science Foundation.

geodynamics.org
geodynamics.org

10

CHAPTER 1.

PREFACE

Chapter 2

Computational Approach

2.1 The Finite Element Method

This section closely follows 7, Chapter 1, sections 1-4. There are two ways we can write the equation, the
strong and the weak form. More readers are probably more familiar with the strong form, and less familiar
with the weak form. The finite element method is cast in the weak form. In elasticity, for example, the
weak form comes from a variational principal, such as the principal of virtual displacements in elasticity. For
viscous flow, there is also a variational form, but we will not discuss that here.

In general, the finite element method takes a differential equation (strong form) and transforms it into
an integral equation (weak form).

2.1.1 The Strong Form

For example, the strong form of this simple equation is stated as follows:
Given f (z) : [0,1] — R and constants g and A, find u : [0,1] — R, such that

Uypr () + [() =0 (2.1)
u(l)=g (22)
—u, (0)=nh (2.3)

This choice of initial conditions allows us to examine both kinds of boundary conditions. The solution is
trivial, but that does not matter. For completeness, it is

wz)=g+ (1 —-2)h+ /: (/Oy f(z)dz) dy (2.4)
2.1.2 The Weak Form

The weak form of the corresponding boundary value problem is stated:
Given f, g and h, as before. Find u (x) e£ such that for all w (z) ev

1 1
/w,m () Uyg () = /w () f(x)dx+w (0) R (2.5)
0 0

v is the set of weighting functions defined by

v={w)|w(z)eH", w(l) =0} (2.6)

11

12 CHAPTER 2. COMPUTATIONAL APPROACH

and L is a set of trial solutions defined by

L={u(z)|u(x)eH', u(l) =g} (2.7)

H?' is the set of all functions whose first derivatives are square integrable on [0, 1]. The integral equation
is then solved by integrating over each element in the domain and adding the result. The result is a large
sparse matrix equation of the form

[Klz =10 (2.8)

where [K] is referred to as the element stiffness matrix. There will be more to say about the implementation
in Section ?77.

2.1.3 Galerkin’s Approximation

Now we have a start on the finite element method. We continue to follow Hughes; however, his notation
becomes quite difficult to keep up with. Now, let’s begin to think about putting a solution on the computer.
Because we will have a finite approximation, related to how fine we space our grid, our solution will only
approximate the real solution. Following Hughes’ notation, the solution on the grid will be denoted as u”
where h is some measure of the spacing at the grid. Then,

1 1
/ wh pul, de = / wh ' de + w"(0)h. (2.9)
0 0

approximates our exact solution w.
On a computer, we don’t have a continuous solution. We have a solution at discrete points. We need to
approximate the solution between the points (in order to integrate over the function). We will do this with

shape functions, as they are usually called in the finite element language. Hughes uses No4A =1,2,--- ,n
to denote the shape functions. You can also think of these as basis functions or interpolation functions.
We require Na(1) =0,A =1,2,--- ;n. In order to specify our boundary condition, we need another shape
function which has the property

Npy1(1) = 1. (2.10)
Then, ¢g" is given by,

9" = 9N (2.11)
and thus,

9" =g. (2.12)

With these definitions, we can write our solution u” as

n

uh =" da Na+ gNnja (2.13)
A=1

where the d4’s are unknown constants to be solved for.

In the next section we will make the shape functions more concrete. It is useful to see how general this
is, because in principle there is a great deal of flexibility in how we choose the shape functions.

We have not said anything more about this function w” and how we are going to choose it. If our shape
functions form a basis set for the grid, then we can represent any function as a sum of the basis functions
times some arbitrary coefficients ¢;,

whzz caNos=ci N + cogNy + -+ + ¢, N, (2.14)
A=1

If you don’t remember this part of your mathematics background think about Fourier series. Any one-
dimensional function can be represented as an infinite series of sines and cosines times some unique set of
coeflicients. The shape functions form a similar kind of basis set.

2.1. THE FINITE ELEMENT METHOD 13

Notice that because we required that No(1) = 0,A = 1,2,--- ,n, Equation ?? satisfies the requirement
that w"(1) = 0, as necessary.
Using our definitions of the w”’s and our approximation for u”, we can get the messy expression for

Equation 77
Yo 9
| 5 ZCANA deNBwNnH dr =
0

1 n n
/ Z caNgy fh dz + Z caNa(0)h. (2.15)
0 a=1 A=1
By rearranging, we can write
> Gaca=0 (2.16)
where
ON - ON
GA=/(A)(ng B)
0
! ' ON4 ON,
— | Niftde—N R AR 2.1
/O aftdr = Na@)h+ [TR gda (2.17)

Now I use the fact that the shape functions are basis functions, so N4y x Np is zero except when A = B.
We could equally well use the fact that the c4’s are arbitrary. Both of these force us to conclude that each
G 4 must be identically zero and we get

Z(aNAaNBd)dB:
= \Jo Ooxr Ox
P ONA ONpia
0 ax 85E

Everything in Equation 7?7 is known except the dg’s. This constitutes a system of n equations and n
unknowns. We can think of the left-hand side as a matrix, K 4g whose entries are

1
/ Ny frde + Ny(0)h — g dx (2.18)
0

1
ONj ONp
=4 d 2.19
We can write N
Z Kapdp=Fs, A=1,2--,n (2.20)
B=1
or as a matrix equation
(K] {d} ={f} (2.21)
where
Ky Ky - Kiy
Ko Kz -+ Koy
[kl =1 . . . (2.22)
Knl KnZ Knn

By tradition, [K] is the stiffness matrix, {f} is the force vector, and {d} is the displacement vector. When
the problem under consideration pertains to a mechanical system, this makes the most sense but, even in
heat conduction problems, or fluid flow problems, the terminology is still (often) retained.

14 CHAPTER 2. COMPUTATIONAL APPROACH

2.1.4 Shape Functions

At this point, we narrow the focus to deal with specifically the elements in ConMan. It is possible to think
very general shape functions but, in practice people use triangles or quadralaterals (in 2D). In terms of
the level of approximation, there are also a lot of possibilities. We will stick to the simplest form, bilinear
elements, but you should be aware that higher-order elements (biquadratic or bicubic spline elements) are
also popular with some people. This section is condensing a lot of very useful material from Chapter 3 of
Hughes’ book into a short overview. If you want to see more complete derivations, proofs of convergence,
etc., of how to go about using higher-order elements, look at Hughes book, Chapter 3.

Let’s start by thinking of a rectangle that is 2a by 2b in length centered at (0,0). There are two properties
we would like the shape functions to have

dONaXY) = 1 (2.23)
A=1
Y ONAXY)Xa = X (2.24)
A=1
4
Y ONAX Y)Yy = Y (2.25)
A=1

Equation ?? says that they are normalized, so that they sum to one (everywhere on XY). Equations 77
and 77 state that the shape functions are also interpolation functions. Without doing a lot of derivation, I
will claim that for the rectangle described above,

(a—x)(b—y)

Ny o= (2.26)
Ny (a+ Z)a(:) (2.27)
Ny W (2.28)
R et (=) 20

these shape functions satisfy the conditions in Equation ?? and Equations 7?7 and ??7. A good exercise
would be to show this is true. A visual representation of these shape functions is shown in Figure??.

In ConMan we further choose to normalize this by setting a = 0.5 and b = 0.5. This choice gives us an
element whose area is 1, a convenient way to scale elements.

Notice that it is easy to take the derivatives of these shape functions. Below we write the x and y
derivatives of the shape functions,

W, - 5= 20
Ny, = (0571_2’) (2.31)
N3, = (0571+y) (2.32)
N, = —05%w) (2.33)

’ 1

2.1. THE FINITE ELEMENT METHOD 15

Figure 2.1: The bilinear shape function for a single element (top) and the four elements whose shape functions
combine to form the global shape function for node A (bottom). Figure taken from Hughes, Section 3.2.

v, - 030 230
Ny, = M (2.35)
N3y = M (2.36)
Nay = @ (2.37)

. If we want to solve a problem on a domain that is not convenient to split into a grid of 1 by 1 unit elements,
we use an important principle of mathematics, the Jacobian of the transformation

B 1
K1 :/ Nl,a:Nl,zdx = / Nl,le,szx (238)
A 0

where J is the Jacobian of the transformation. This is a very powerful point. When we are thinking of
solving a regular Cartesian domain, this just corresponds to a stretching or a shrinking the shape functions
above (see Figure 77).

However, if we are thinking about a cylindrical geometry, for example, we can use the Jacobian of the
transformation between the geometries. Let’s look at two examples.

Converting an element 0.05 by 0.10 centered at (0.1,0.2) to the ‘parent element’ centered at (0,0). Hughes
also uses £, n for the X, Y coordinate pair in the ‘parent element.” So we could write

z = 0.140.05¢+0.0n (2.39)
y = 0.2+0.0£+0.10n (2.40)

or in matrix form we could write

{ 5 }: { 06905 0().i00] { 5 }+{ 8:; } (2.41)

16 CHAPTER 2. COMPUTATIONAL APPROACH

"l
(x5]
(=3, ¥
yg D
1; -1 (1.-1)
Parent domain . rd
x

\..._____{;}____,..J

-

Figure 2.2: The mapping between the global domain (right) and the parent element domain (left) using the
shape functions. Figure taken from Hughes, Section 3.2.

If the transformation was from an arbitrarily-shaped quadrilateral to the parent element, then the off diagonal
terms in the matrix in equation 77 will not be zero. It is easy enough to show that

/I w /y y f(z,y)dedy = [11 [11 f(&n) det]J] d¢ dn (2.42)

where [J] is the Jacobian of the transformation. It turns out, and it is also easy to show, that det[J]
is the ratio of the areas when going from one rectangle to another (in fact any Cartesian to Cartesian
transformation).

Now suppose we want to map a cylindrical domain to our ‘parent element.” We can use the same principle
in this case,

x = rcosf =cosff—rsinfn (2.43)
= rsinf =sinf&+ rcosfn (2.44)
o
det[Jgeometry] = T cos? 0 +rsin®6 =r. (2.45)
and putting these together, we find
re 02 1 pl
/ / f(rcosf,rsind)rdrdd = / / F(&,n) det[Jareq] d€ dn (2.46)
T1 91 —1 -1

2.1.4.1 Gauss Quadrature

Gauss Quadrature is a way to turn an integral into a summation. Let’s begin with several 1D examples.
The easiest case is that where our function is a constant on the interval -1, to 1, f(z) = ¢

1
/ cdr = cx|t| = 2¢c (2.47)
—1

. Any constant c¢ integrated from -1 to 1 gives a value of 2¢. Note that if you take two times the value of the
function evaluated at zero, you also get 2c,

2.0 x £(0) = 2c. (2.48)

2.1. THE FINITE ELEMENT METHOD 17

Gauss went on to show that for any higher-order function, the best value you could get with one point was
to take the value of the function at the mid-point and multiply by a weighting function of 2.

Gauss showed that for any linear function, if one evaluated the function at two points and summed the
result, and one wanted the sum of those two points to give you the best possible approximation to the
integral over the range -1 to 1, those two points would be _/—% and % Consider an arbitrary linear function,

f(x) = ax + b. Direct integration gives,

1 2
/1(ax+b)dx:(%Hx)ﬁl:gw—(g—b):zb. (2.49)

Now let’s evaluate the function at the two points, ;:1,) and %, and sum the results,

-1 -1 -1 1
%)+f(%):a%+b+a%+b:2b, (2.50)

This shows that _/—217), % will always give you an exact result for a linear equation but, what Gauss showed

was more powerful, that for any higher-order function, choosing the points _/—%, % will give you the best

approximation possible with only two function evaluations. If we go to three terms, it turns out that the

I

best choice for the points to evaluate the function are — %, 0, \/g .

To integrate a 2D Cartesian region, like our parent element, it turns out that 2 by 2 quadrature, or the
four points

~1 -1

€= == (2.51)

g L _ -t (2.52)
i B '

&= i = L (2 53)
i B '
~1 1

Y S (254

are sufficient to exactly integrate our bilinear shape functions over the -1,-1 to 1,1 domain. Note this is not
an approximation, because the function is linear, the integral is exact. (If we used higher-order elements
we would need more function evaluations, hence the number of operations needed to calculate the integral
would increase.)

The shape functions are generated in ConMan in the subroutine genshp for GENerate SHape functions
Parent domain. If you look at the routine, you will find the first part of it is pretty easy to follow from the
discussion above. Because we only evaluate the shape functions at the Gauss quadrature points and because
the parent element is on the domain -0.5 to 0.5 in x and in y, we can precompute these values. The second
part of this subroutine calculates the length of the sides of the elements in the physical domain (i.e., not the
parent element domain). This is used in the SUPG elements (i.e., upwinding) described in a later section.

The subroutine genshg calculates the global shape functions. This uses the mapping and Jacobian of the
transformation described above. We call this routine once and store all the shape functions because the grid
remains fixed through out the computation, hence the loop over numel. This requires more memory to store
the shape functions and their derivatives but, it reduces the number of computations needed. Again, because
the shape functions and the derivatives of the shape functions are only needed at the Gauss points, we only
store five values of these quantities, the four Gauss points listed in Equations ??7-7?7, and a fifth Gauss
point at (0,0) which is used when we use ‘reduced intergation’ for the pressure. It will become necessary to
continuously update the shape functions if one wishes to modify ConMan for a Lagrangian formulation or
adaptive gridding.

There are two domains to keep in mind when thinking about the finite element method: the global
domain and the parent element domain (Figure ?7). All calculations are done in the parent element domain
and the results are assembled into the global equations. This means all calculations can be pre-computed
for a single parent element genshp. Elements of different sizes or shapes filling an irregular global domain

18 CHAPTER 2. COMPUTATIONAL APPROACH

(1, 32)= 0]
D2 32)= 0

(1, 59) = 115
(2, 59) =116
(1, 164) = 0
ID(2, 164) = 323
(1, 168) = 332
ID(2, 168) = 333 |

() — Local node numben

Figure 2.3: An example illustrating the relationship between global nodes and equation numbers for a 2
degree of freedom problem using the id array. An equation number of zero denotes a boundary condition.
Figure taken from Hughes, Section 3.2.

geometry (i.e., non-rectangular) can be solved by the same program. The only difference between these
elements is the Jacobian of the transformation between the input domain and the parent element domain,
calculated in subroutine genshg.

For ConMan the choice was made to use bilinear quadrilaterals as the parent elements (Figure ?7).
Higher-order elements (i.e., biquadratic or bicubic-spline) require more computational work per element.
There is more computations necessary to evaluate the higher-order function itself and more integration
points are needed to calculate the integral exactly using Gauss quadrature. It has been our experience that
using a grid with more linear elements, rather than using high-order elements, is the best strategy for an
efficient, accurate code for incompressible, advection-diffusion problems. Other codes have made different
choices.

Because in finite element routines it is natural to loop over the elements, whereas for matrices or graphical
output, it is useful to loop over the nodes, there is a need to map back and forth between the node numbering
and element numbering. To do this we define several bookkeeping arrays to identify nodes and elements in
each of the domains. In ConMan, those arrays are called:

id transforms global nodes to equation numbers (Figure ?7).
ien transforms element local node numbers to global node numbers (Figure 77).
Im transforms element local node numbers to global equation numbers.

It is worth noting that the numbering of local elements always begins with 1 in the lower left-hand corner.
There is no special reason; you just have to choose a convention.

With these mapping arrays, we are able to switch back and forth between looping over elements and
looping over nodes. Global node numbering is specified by the user, and equation numbers are assigned by
the code to denote the row in the stiffness matrix corresponding to the degree(s) of freedom for that node.
One global node may have more than one equation number because there may be more than one degree
of freedom per node. Boundary conditions are specified with a zero equation number. Because the matrix
is sparse, it is desirable to permute the stiffness matrix for computational efficiency. These arrays spare
the user from dealing with the transformations, while making the code efficient. Within ConMan, the data
structures for these two arrays are

2.1. THE FINITE ELEMENT METHOD 19

id (degree-of-freedom , global-node-number) = equation-number
ien (local-node-number, element-number) = global-node-number

Im (degree-of-freedom, local-node-number, element-number) = global-equation-number

2.1.5 The Element Point of View

Transforming between the element and global points of view is done with the data structure called the ien
array for Element to Node transformation. The ien array takes an element number and a local node number,
and its value is the global node number. It is easiest to look at an example.

Consider a 2-element by 2-element grid 7?7 with elements numbers consecutively in the horizontal direction
and nodes numbered consecutively in the vertical direction, starting with the lower left hand corner. For
each element, the local nodes are numbered starting with the lower left-hand corner. The ien array for this
small grid is given in Table ?7.

Figure 2.4: An example illustrating the relationship between global node numbers and local element numbers
using the ien array. Local nodes are numbered counterclockwise from the bottom left-hand corner.

element local node 1 local node 2 local node 3 local node 4
element 1: ien (1,1) =1 1ien (1,2) = ien (1,3) =5 den (1,4) =2
element 2: ien (2, 1) = ien (2,2) =7 en (2, 3) = ien (2,4) =5
element 3: ien (3,1) =5 1ien (3,2)=8 ien(3,3) =9 ien(3,4) =6
element 4: ien (4,1) =2 1ien (4,2) =5 1ien (4,3) =6 ien (4,4) =2

Table 2.1: ien array for the 2 element by 2 element grid shown in 77.

Nodes and elements can be numbered with either the horizontal or vertical direction increasing fastest.
This is controlled by the users choice of increment in the x and y directions for the nodes and the ien array

20 CHAPTER 2. COMPUTATIONAL APPROACH

in the geom file. For problems where flow out the left-hand side is matched by flow in the right-hand side
(i.e., wrap around boundary conditions), it is necessary to increment the nodes fastest in the vertical (y)
direction. Not only does this reduce the bandwidth of the matrix, the logic of the wrap-around boundary
condition assumes this ordering and will likely fail if you increment the nodes fastest in the horizontal (x)
direction.

2.1.6 Bousinessq Equations

ConMan was originally written to solve the equations of creeping thermal convection using the Bousinessq
approximation. In this version we have adapted it to include the Extended Bousinessq (EBA), Truncated
Anelastic Liquid (TALA), and Anelastic Liquid (ALA) approximations. For brevity, we present the descrip-
tion of the finite element method applied to the Bousinessq approximation.

Tijg+fi = 0 (2.55)
u; = 0 (2.56)

where
Tij = —POij + 2p1u 5) (2.57)

where
i) = (uij +) /2 (2.58)

We replace Equation 7?7 with the following relationships

Tij = —p)‘dij + 2,&’(1,(1"]‘) (259)
0=ui; +p*/\ (2.60)

As X approaches infinity, these relations approach the incompressible solution. Also, as A approaches infinity,
p* approaches the hydrostatic pressure in the incompressible case. In general, the hydrostatic pressure is
—74;/3. Substituting Equation ?? into ?? we get

Tij = Aii0ij + 2pu 5) (2.61)
or
Tii = 3 i + 2pu; (2.62)
or
Tii/3 = —p = (A +2/3p)ui (2.63)
but we also have
—p = Ay (2.64)

from Equation ??. Clearly in the incompressible limit A > u then A +2/3y — X and p* — p. Also note
that the continuity equation is satisfied.
Now, substituting Equation 7?7 into Equation 7?7 we have

{Augidiy + 2pug jy}, 7+ fi =0 (2.65)
At this point, it is probably easier to switch to differential notation. These will also specialize to 2D:

% (?+ g;)w (?+—)/2}+—{ u(@Jr—)/Q}JrfoO (2.66)
5o G+ 52+ i{x<%+§—z>+2u<§—;+—>/2}+fy—o (2.67)

2.1. THE FINITE ELEMENT METHOD 21

These are second order partial differential equations. Simplifying, we get

0%u 8%v 8%u 0%u 8%v
2 - _ 2.
Mgez ¥ zay) "o THGa T 8y8x> T fe= (2:68)
0%u 8211 (92u 0%v 0%v
— 20— Y = 2.

Now we use the same technique (approach) as we used in Possion’s equation to turn the differential form
into an integral form. You can either look at it as we find the variational form of the Stokes equation (which
is what we are doing) or you can think of it as multiplying by a weighting function w and integrating over
the domain. Then using integration by parts to convert the second derivatives to first derivatives. This is
done carefully by Hughes in The Finite Element Method on pages 197-200, but he has left out a number of
intermediate steps. Nothing about this step is hard, just tedious. There is, however, a clever shortcut. If
we return to the messy equations at the top of the page, multiply them by the weighting function w and
integrate over the domain, then we do not have to use integration by parts. To see this for yourself, simply
take the equations directly above this paragraph, multiply by a weighting function w and integrate over the
2D domain €, then use integration by parts. You will find (after a little algebra)

//Q @+?) *H*{ (@+—)/2}d9+

/ / fowdQ = b.c. terms (2.70)
// @+gl)/}+*w@+?)+2 e LORe

//szwdQ:b.c. terms (2.71)

Note that we don’t get something for nothing; this shortcut does not give us the boundary condition terms
(velocity or flux). These would fall out of the integration by parts. Recall,

b b
/wdv:wv\g—/ v dw (2.72)

where in our case w is the weighting function and v is the second derivative term. The first term gives us
the flux (first derivative) boundary conditions. In the case of the momentum equations, that is the applied
tractions (or stress boundary conditions).

Now we make use of Galerkin’s approximation, or more simply, we use the same weighting functions as
we use for interpolation function, i.e., the shape functions, N. So we substitute

g—: =N, (2.73)
‘Z—Z =N, (2.74)
% =uN, (2.75)
g—z =uN, (2.76)
% =uN, (2.77)
v _y N, (2.78)

22 CHAPTER 2. COMPUTATIONAL APPROACH
into our weak form equations. Although messy, that is straight-forward.
//Q NA{Au Nz +vNy)+2pu Ny} + Ny{p(v Ny +uNy)}dQ +
//Qfx wdQ = b.c. terms (2.79)
//Q No{p(u Ny + v Ny)} + Ny{A(u Ny + v Ny) + 2p0 Ny} dQ +

// fywdQ = b.c. terms (2.80)
Q

At this point, it is useful to separate the equations into a A part and a p part. We can also write them
as a 2D matrix equation

NN, N,AN.
(KN = [N.AN, N.AN.] (2.81)
and
_ | Nu2uNg + NuN, N, uNy
Kl = { NN, N.2uN. + Ny,] ' (282)

Hughes makes use of an interesting and important observation. This observation will greatly simplify
constructing the stiffness matrix for arbitrary coordinate systems. We can rewrite the stiffness matrices
above in the following form:

(KA + [K,] = [B]"[D][B] (2.83)
[Dx] + [Dy] = [D] (2.84)
where _ -
2 0 0
[Dy=pn| 0 2 0 (2.85)
| 0 0 1 |
and _ _
1 1 0
[D)] = 1 1 0 (2.86)
|0 0 0 |
and
N, O
[B] = 0 Ny |. (2.87)
Ny, N,

The momentum and energy equations form a simple coupled system of differential equations. We treat
the incompressibility equation as a constraint on the momentum equation and enforce incompressibility in
the solution of the momentum equation using a penalty formulation described below. Since the temperatures
provide the buoyancy (body force) to drive the momentum equation and since there is no time-dependence
in the momentum equation, the algorithm to solve the system is a simple one: Given an initial temperature
field, calculate the resulting velocity field. Use the velocities to advect the temperatures for the next time
step and solve for a new temperature field. If the time stepping for the temperature equation is stable, then
this method is stable and converges as At — 0.

The element stiffness matrix (Equation ?7?) is made up of the two terms from the left hand side of the
integral equation. The full element stiffness matrix for the quadralilateral element is an 8 by 8 matrix made
up of 16 of the 2 by 2 matrices. In older versions of ConMan we only stored the upper triangular part of the
matrix. New to Version 3.0: In the original version of ConMan, we took advantage of this by considering
only the upper triangular part of the stiffness matrix and saving both storage and operations using Cholesky
factorization. In the TALA and ALA the stiffness matrix is no longer symmetric, so we now use sparse
matrix factor unfact and back substitution unback routines for all cases. The integration is done using two
by two Gauss quadrature, which is exact when the elements are rectangular and bilinear shape functions are
used. The A term is under-integrated (one point rule) to keep the large penalty value from effectively locking

2.1. THE FINITE ELEMENT METHOD 23

the element (?). The right-hand side is made up of three known parts, the body force term (f;), the applied
tractions (h;) and the applied velocities (g;). The momentum equation is equivalent to an incompressible
elastic problem, and the resulting stiffness matrix will always be positive definite (?, p. 84-89). More details
of the method and a formal error analysis can be found in ?. The stiffness matrix is formed in routine f _vstf
and the right-hand side is formed in routine f tres.

The energy equation is an advection-diffusion equation. The formal statement is

Find T : © — R such that

T+uT;=rTy+H onQ (2.88)
T=0b only (2.89)
T,nj=q onT, (2.90)

where T is the temperature, u; is the velocity, x is the thermal diffusivity and H is the internal heat source.
The weak form of the energy equation is given by

/ (w + p) TdQ = —/ (w+p) (w;T,;)dQ2 (2.91)
Q Q

- H/ w’lTﬂdQ + / wfjnjdfq (2.92)
Q T,
where 7" is the time derivative of temperature, T'; is the gradient of temperature, w is the standard weighting
function and (w + p) is the Petrov-Galerkin weighting function with p, the discontinuous streamline upwind
part of the Petrov-Galerkin weighting function, given by
p=T1uVT = foid (2.93)
[[wll?

The energy equation is solved using Petrov-Galerkin weighting functions on the internal heat source and
advective terms to correct for the under-diffusion and remove the oscillations which would result from the
standard Galerkin method for an advection dominated problem (?). The Petrov-Galerkin function can be
thought of as a standard Galerkin method in which we counterbalance the numerical under diffusion by
adding an artificial diffusivity of the form

(Eughe + nuyhy) /2 (2.94)
with 9
K
= 1 _— 2.
E=1- (295)
2K
= 1 — 2.
7 Wi (2.96)

where he and h,, are the element lengths and u¢ and u, are the velocities in the local element coordinate
system (£ 7 system) evaluated at the element center. This form of discretization has no crosswind diffusion
because the “artificial diffusion” acts only in the direction of the flow (i.e., it follows the streamline), hence
the name Streamline Upwind Petrov-Galerkin (SUPG). This makes it a better approximation than straight
upwinding, and it has been demonstrated to be more accurate than Galerkin or straight upwinding in
advection dominated problems ?. It has since been shown that the SUPG method is one of a broader class
of methods for advection-diffusion equations referred to as Galerkin/Least-Squares methods (?).

The resulting matrix equation is not symmetric, but since the energy equation only has one degree of
freedom per node, while the momentum equation has two or three, the storage for the energy equation is
small compared to the momentum equation.

For the explicit time stepping method, the energy equation is not implemented in matrix form. The added
cost of calculating the Petrov-Galerkin weighting functions is much less than the cost of using a refined grid

24 CHAPTER 2. COMPUTATIONAL APPROACH

with the Galerkin method. The Galerkin method requires a finer grid then the Petrov-Galerkin method to
achieve stable solutions (7).

For the explicit method, the time stepping in the energy equation is done using a second-order predictor-
corrector algorithm. The form of the predictor-corrector algorithm is

Predict: .
T =T, + At(1—a) T, (2.97)
79 =0 (2.98)
Solve: » _
M*ATY) = RO (2.99)

RS)H =— [T721+)1 +u- (Tffll) ,x] (w4 p) — kw4 (T721+)1> ,x+ (boundary condition terms) (2.100)

Correct:
T =1 4 At (2.101)
Tr(i:_ll) = Tf:,i-s)-l + ATéQl (2102)

where ¢ is the iteration number (for the corrector), n is the time-step number, T is the temperature, T is the
derivative of temperature with time, AT is the correction to the temperature derivative for the iteration, M*
is the lumped mass matrix, Rgfi_l is the residual term, At is the time step and « is a convergence parameter.
Note that in the explicit formulation M™* is diagonal.

The time step is dynamically chosen, and corresponds to the Courant time step (the largest step that
can be taken explicitly and maintain stability). With the appropriate choice of variables, « = 0.5 and two
iterations, the method is second order accurate (?, p. 562-566).

The predictor step is computed in the subroutine time driver, the residual vector, R, is formed in
the subroutine form temp rhs explicit, the lumped mass matrix , M*, (which is a vector) is formed
in the subroutine form temp mass matrix, and the corrector step is also computed in the subroutine
form temp rhs explicit.

For the implicit energy equation solver, the equations are cast in a matrix form. The big advantage
here is the use of Picard iteration, which allows the solution to quickly advance to the steady-state solu-
tion in far fewer steps. This version of the energy equation uses the routines form temp matrix and
form temp rhs implicit.

Chapter 3

Incompressible and Compressible
Equations

Version 3.0 of ConMan includes the Extended Bousinessq Approximation (EBA), Truncated Alelastic Liquid
Approximation (TALA), and Alelastic Liquid Approximation (ALA) forms of the compressible equations (?).
The formulation can be changed by setting the flag (itype) on the second line of the input file. These forms
follow the derivations in ? including the use of the Adams-Williamson equation of state. This was a useful
analytic form for a benchmark but probably not the best form for research. This is provides so that users
can see how to extend ConMan for their own research. Here we repeat section 2 of 7 with comments so that
the reader can follow the implementation in the code. The references can be found in ?.
Mass conservation is given by

ap o
5 TV (i) =0, (3.1)

where p is the density and « is the velocity The conservation of momentum is given by

Dpu

Dr = ~VP + V.74 pg (3.2)

where P is the pressure, g is the gravity, D /Dt is the material derivative, and 7 is the deviatoric stress tensor
given by

2
r=2mé=n(Vi+VaT) - gnv - W0y (3.3)

where 7 is the dynamic viscosity, € is the strain-rate tensor, and §;; is the Kroneker delta. Equation 77
assumes that the bulk viscosity of the fluid is zero. Finally, the equation of energy conservation is given by,

DT DP
T

where T is the temperature, c, is the heat capacity at constant pressure, « is the coefficient of thermal
expansion, k is the thermal conductivity, H is the volumetric heat production and ¢ is the viscous dissipation
given by

Qs_;Tié_Ting‘ (3.5)
In compressible convection, there is the additional required assumption—the reference state,
T=T+T (3.6)
P=p+yp (3.7)
p=p(T.p)+p (3.8)

25

26 CHAPTER 3. INCOMPRESSIBLE AND COMPRESSIBLE EQUATIONS

where the over-barred quantities are time-independent and functions of depth only. The reference pressure
is given by the hydrostatic approximation

Vp = pg. (3.9)
Using the assumption that p’ < P, we can eliminate pressure from the energy equation (?7), yielding
DT’ ;- L o
P = V- (kV(T'+T)) + pH + ¢— pcpyi- VT
—o(T + T") pgw (3.10)
where @ - § = —wg, where w is the upward component of velocity.

For the reference state (p, T'), we assume an adiabatic Adams-Williamson equation of state (Birch, 1952),
where

_ Qrg = Qrg
p(z) = prexp(——2) , T(2) = Toursexp(——2) (3.11)
’yrcpr Cpr
where z is the depth coordinate (parallel to the direction of gravity), .. is the reference value for the Griineisen
parameter, T,y is the surface temperature, and variables with the sub-script r are constant values used
in defining the reference state. From this reference state, we note that VI = (0, —a,-g,T/¢cp,), which along

with dropping terms with p’ and that ¢, ~ ¢, , allows us to further simplify the energy equation (?7),

DT’ _
T V- (kV(T'+T)) + pH + ¢ — pagwT". (3.12)
The expansivity @ is % and formally dependent on the reference state. For the purposes of the benchmark,
we will assume that @ = 1.

3.1 Equations under the Anelastic Liquid Approximation (ALA)

We nondimensionalize the equations using the reference values for density, p,, thermal expansivity, a.,
temperature contrast, AT, thermal conductivity, k., heat capacity, c,, once again assuming that ¢, ~ c,,
depth of the fluid layer, L, and viscosity, 7. The non-dimensionalization for velocity, u,, pressure, p,., and
time, t,., become

ky Nk _ prepL?

= = t
Uy pr ch I p’l‘ pr ch2 I T kr

(3.13)

The non-dimensionalization introduces four non-dimensional numbers, the Prandtl number, Pr, the
Mach number, M, the dissipation number, Di, and the Rayleigh number, Ra. If we assume that the relative
volume change due to temperature, o, AT, < 1, M?Pr <« 1 and Pr — 0o, we arrive at the Anelastic Liquid
Approximation (ALA).

Under the ALA, the conservation of mass becomes

V-(pi) = 0 (3.14)
the conservation of momentum becomes

pC
0= -Vp + V-r+Di-LL ' — RapagT’ /AT, (3.15)
sYrCy
where ¢ is the unit vector in the direction of gravity, ¢, is the specific heat at constant volume, p is now
dimensionless (i.e, equation (??) divided by p,) and the Rayleigh number and dissipation number are given
by
Ra = 0BT g ey
nrkr Cp
With the assumption of constant thermal conductivity, and using the dimensionless reference states for
p and T given by

argrL

(3.16)

'R T9 T .
p = prexp(2'Di/v,), and T = ﬁ exp(z' D), (3.17)

3.2. EQUATIONS UNDER THE EXTENDED BOUSINESSQ APPROXIMATION (EBA) 27

where 2’ is the dimensionless vertical coordinate. The conservation of energy (??) under the ALA becomes

_ DT . 2 _ Di 27

P or + DipawT’ = V*T' + pH + QSE + Di*T. (3.18)
Equation (?7) resembles the familiar energy equation in Bousinessq convection with the addition of three
terms: the viscous dissipation, qﬁ%, the work done against gravity

W = DipawT’ (3.19)

and a second-order term in dissipation number, Di?T that arises from substituting equation (17) into the
V - (kVT) term in equation ??. Because T is independent of time and only depends on depth, this terms
acts like a depth-dependent internal heat source. The volume-averaged work done against gravity < W >
exactly balances the volume-averaged viscous dissipation < ¢ > (??7?). This is one of the measures that we
use to assess the energy conservation of the codes.

It is also worth pointing out that the reference state used here fails when 7, — 0, leading to the non-
sensible reference temperature state T = 0. For the ALA benchmark, equations ??, 7?7 and ?? are solved.

3.1.1 Equations under the Truncated Anelastic Liquid Approximation (TALA)

For the TALA, the pressure term in the buoyancy force is ignored, in which case equation 77 becomes
0 = —-Vp + V-7 — RapagT’ (3.20)

Some numerical methods have difficulty with equation ?? and the TALA (equation ?7) has often been
used in compressible studies (???). ? show that there is an imbalance between viscous dissipation and
gravitational potential energy with the TALA. 7 demonstrate that the imbalance is caused by ignoring
dynamic pressure’s effects on buoyancy and can be removed using the ALA. We further compare the difference
between these formulations below.

3.2 Equations under the Extended Bousinessq Approximation (EBA)

For the EBA, the reference state changes to p = 1 and 7" = 0. This leads to the first step beyond the
Bousinessq approximation and is a useful check that the additional terms in the energy equation that scale
with dissipation number, Di, have been implemented and scale properly. With the further assumption that
a=1,k=1, and ¢, =1, the conservation and constitutive equations become

V-i =0, (3.21)
the conservation of momentum becomes
0 = -Vp + V-7 — RagT" (3.22)
DT’ Di
Diw(T' +1T,) = V?*T' + pH iy 2
Di + Diw(T' 4+ T,) \Y% + pH + (bRa (3.23)
and
r=2mné=n(Vi+ViT). (3.24)

Note that because T = 0, the boundary condition at the base of the fluid layer remains unmodified in
the EBA (ie., T' =1).

3.3 Equations under the Bousinessq Approximation (BA)
By dropping the terms that scale with the dissipation number, Di, equations ?7-?7 reduce to the Bousinessq
approximation. Under the BA, equations 7?7, ??7 and 7?7 remain unchanged and equation 7?7 becomes

DT’
Dt

= V1" + pH. (3.25)

28

CHAPTER 3. INCOMPRESSIBLE AND COMPRESSIBLE EQUATIONS

Chapter 4

Implementation

4.1 Introduction

There are generally three phases to ConMan, input, time stepping, and output. The main program is
found in ConMan.F. The input is read in the files input.F and elminp.F. Time stepping is doing in
time driver.F. All output subroutines have been gathered into a subroutine called output. The rather
cumbersome structure of eglib calling eg2.F for element routines has been removed. This was originally in
place to allow for different types of elements to be considered but has never been used.

In version 3.0 we have made a number of minor changes:

1. Many subroutines were renamed to take advantage of the relaxation of the eight character naming limit
in FORTRANTY7. The major elemenr subroutines are now named form _velocity stiffness matrix,
form velocity rhs, form temperature rhs explicit, form temperature rhs implicit
and the files are given the same names as the subroutines. This should make it easier for users to
follow the code.

2. For compressible convection, the stiffness matrix is no longer symmetric, thus we now calculate the
full local and global stiffness matrices and use subroutines unfact.F and unback.F to calculate the
forward reduction and back substitution of the global stiffness matrix. This is not as efficient for the
Bousinessq and Extended Bousinessq cases but it simplifies the code.

3. We have removed the memory manager and now use FORTRAN’s allocate function to dynamically
allocate memory. This greatly improves the portability of the code.

4. Picard iteration is now a runtime, as opposed to compile, option.

5. We have collected the output subroutines into a subroutine called output.F and this is called at the
end of the time-stepping loop in subroutine time drive.F.

4.2 Material Properties

4.2.1 Buoyancy

As discussed above, the equations in dimensionless form have one dimensionless parameter, the Rayleigh
number

aATd3
Ra=222"C (4.1)
Kpl
where g is the acceleration due to gravity, « is the coefficient of thermal expansion, AT is the temperature
drop across the box, d is the depth of the box, x is the thermal diffusivity, and p is the dynamic viscosity.

In ConMan, the input parameter is the buoyancy part of the Rayleigh number,

29

30 CHAPTER 4. IMPLEMENTATION

Rabuoy = ga (42)

The depth, d, and the temperature difference, AT are specified from the grid and the temperature
boundary conditions, while k and u are separate input parameters. If the depth, temperature difference, s
and g are set to 1, then the buoyancy number, RAp,oy, and the Rayleigh number, Ra, are the same. This
is the way most users set up problems in ConMan.

4.2.2 Rheology

The viscosity can be a function of temperature, pressure, or strain-rate. This is done in the subroutine
rheol. The subroutine rheol is called for each element and the values of the coordinates zl, velocity vl
temperature tl, and element number iel, are passed into subroutine rheol. The viscosity, calculated at each
integration point, evisc(intp) is returned by rheol. The functional form of the viscosity law depends on the
choice of the input parameter ntimvs. If ntimvs = 0, then a constant viscosity is used and evisc(intp)=1.0
for each integration point. If ntimvs = 1, then the viscosity is a function of temperature following

evisc(intp) = po exp [—b tq(intp)] (4.3)

where b = 6.907755279, tq(intp), is the temperature at the integration point (calculated from tl), and p, is
the value of the viscosity from the input file (usually chosen to be 1.0). The choice of b gives a factor of 1000
variation across the temperature range of 0 to 1. This is the rheology used in ? case 2a. If ntimvs = 2, then
the viscosity is a function of temperature following

evisc(intp) = poexp [—b tq(intp) + ¢ (1.0 — zq(intp))] (4.4)

where b = 9.704060528, ¢ = 4.148883083, tq(intp), is the temperature at the integration point (calculated
from tl), (1.0 — zq(intp)) is the depth of the domain and p, is the value of the viscosity from the input file
(usually chosen to be 1.0). The choice of b gives a factor of 10000 variation across the temperature range of
0 to 1. This is the rheology used in ? case 2b.

If ntimvs = 3, then the viscosity is a function of temperature and pressure following an Arrhenius
formulation,

E* x1. *(1.0 — z(¢ E* x1. *(1.0 — z(¢
emc(mtm:%{exp{ +1.0e3 + V*(1.0 z(mtp))}_exp{ % 1.0e3 + V*(1.0 z(mtp)}} (4.5)

R« (tq(intp) + T) Rx(1+T,)

where p, is the preexponential viscosity, E* is the activation energy (set in the input file), V* is the activation
volume (set in the input file), and T, is the temperature offset. In the input files, y,, is input on the viscosity
card, E* is input as Tcon(1), V* is input as Tcon(2), and T, is hardwired in rheol.F to be 273. AT is
hardwired to be 2000.0. The scaling in rheol.F is such that E* can be input in kJ/mole and V* can be
input as cm?.

If ntimvs = 4, the rheology is a combination dislocation/diffusion creep rheology following ...

If ntimvs = 5, the rheology is a yield-stress formulation consistent with ?. In this form, the effective
viscosity evisc(intp),

evisc(intp) = % (4.6)

nerT ne

where 1,7 is the pressure and temperature dependent rheology,

npr = exp [—b tl(intp) + ¢(1 — z(intp))] (4.7)
and ng, is the viscoplastic form
. O
ne=n"+ > (4.8)
€2

where n* is the plastic rheology, o, is the yield stress rheology, and é; is the second invarient of the strain-rate
tensor. In this formulation, * is hard-wired to 10~° and b is hard-wired to 11.512925 = In 10°. ¢ is set from
the input file (tcon(1)) and o, is set from the input file (tcon(2)).

4.2. MATERIAL PROPERTIES 31

The user can easily modify the existing or add new rheology options for specific problems of interest.
Using ntimvs = 4 or 5 one should add an iteration loop within each time step in subroutine time drive.F
to allow the change in velocity each step to come to consistency with the rheology. Experience has shown
that after the first step, which may require 10-20 iterations, 2-3 iterations per step is all that is needed to
converge (7).

Users who are new to viscous flow should approach viscoplastic or composite rheologies with an abundance
of caution, as small changes can cause convergence headaches and/or unexpected results.

4.2.3 Internal Heating

Internal heating can be specified through the internal heating parameter. If no bottom temperature is
specified, the Rayleigh number becomes

Hd°
Ra = ga

o (4.9)

where H is the internal heating parameter and k is the thermal conductivity. The grid can have multiple
material groups, each with its own set of material properties.

32

CHAPTER 4. IMPLEMENTATION

Chapter 5

Installation

5.1 Building from Source
5.1.1 System Requirements
ConMan has been tested on a variety of computational platforms including:

e Mac OS X EI Capitan (10.11.6) (gfortan configured with gec version 6.1.0)
e Scientific Linux 6.10 (gfortran configured with gcc version 4.4.7 20120313)

e ubuntu xxxx (?) placeholder for CIG information

It is likely to run on other platforms as well but has not been tested.

5.1.2 Dependencies

This version of ConMan is self-contained and requires no external libraries.

5.1.3 Downloading and Unpacking the ConMan Code

You can get the source for the latest release from the ConMan web page (geodynamics.org/cig/software/
packages/mc/conman/)). Download the source archive and unpack it using the tar command:

$ tar xzf ConMan-3.0.tar.gz

Advanced users and software developers may be interested in downloading the latest ConMan source code
directly from the CIG source code repository, instead of using the prepared source package. To check whether
you have the git version control client installed on your machine, type:

git -version
You should get a response that looks something like this:
git version 2.8.4 (Apple Git-73

Otherwise, you will need to download and install git, available at the Git Website (https://git-scm.com/
downloads). Then the code can be checked out with the following command:

git clone https://github.com/geodynamics/conman.git
The ConMan software package contains the follow directories:

~/src ConMan source code directory.

33

geodynamics.org/cig/software/packages/mc/conman/
geodynamics.org/cig/software/packages/mc/conman/
https://git-scm.com/downloads
https://git-scm.com/downloads

34 CHAPTER 5. INSTALLATION

~/doc ConMan manual and other documentation.
~ /cookbookl input and geometry files for the Blankenbach benchmark cases.
~ /cookbook2 input and geometry files for the driven slab problem in ?.

~ /cookbook3 input and geometry files for the compressible benchmarks in ?.

5.1.4 Compiling and Running ConMan

ConMan comes ready to run with a standard Makefile that contains the system calls for the compiler (FC)
and the loader (LD). The distribution assumes this is gfortran, otherwise they will need to be modified for
your local environment.

There are no external libraries or packages required. All source code is in the directories src, src/grid.src,
src/utils.src, and src/solver.src

Typing ‘make’ in the src directory will produce the ConMan executable conman in the main directory.
The warning messages Branch at (1) may result in an infinite loop are normal and expected. We take
advantage of FORTRAN’s ability to continue reading a file after a read error. This is done to allow the user
to annotate files with comments, which has proven to be a useful and popular feature. If there is really and
input error, the code will fail and ususally the problem can be diagonsed looking at the file out.xxxx.

To run ConMan type:

$ conman < runfile

where runfile is a text file that has a list of filenames that can be up to 80 characters long. For more details
on runfile, see Chapter ?77.
5.2 Support

The primary point of support for ConMan is the CIG Mantle Convection Mailing List (cig-mc@geodynamics.
org). Feel free to send questions, comments, feature requests, and bugs to the list. The mailing list is archived
at

cig-mc Archives (geodynamics.org/pipermail/cig-mc/)

WE DO NOT USE ROUNDUP ANY LONGER
You may also use the bug tracker

Roundup (geodynamics.org/roundup)

to submit bugs and requests for new features.
FEATURE REQUESTS SHOULD GO TO ISSUES. BUGS TO0???

cig-mc@geodynamics.org
cig-mc@geodynamics.org
geodynamics.org/pipermail/cig-mc/
geodynamics.org/roundup

Chapter 6

Input Guide

To run ConMan a series of nine file names are needed, some for input and some for output. Usually these are
read from a runfile. The first two files are input files input and geom and are described in this section. The
third file is an output file showing all the input parameters in a verbose form. The fourth and fifth files are
an input temperature file (optional) and an output temperature file. These are for starting a new run from
a previous run. The sixth file is a time series file (see routine fluxke), the seventh file is the coordinates,
velocities and temperatures, the eighth file is for stresses (see routine stress.F) and the ninth file is for geoid
and topography (see routine geoid.F). These file names are read in subroutine ConMan.F.

The input for ConMan is read from two different FORTRAN units. The first unit, iin, contains the time
stepping, output, and material parameters as well as element type information while the second unit, igeom,
contains the coordinates, boundary values and connectivity information. ConMan reads the file names to
attach to these units from standard input. The typical way to run ConMan is to create a file with nine lines,
one file name per line, and redirect this into the executable (i.e., % conman.pic < runfile &). iin is attached
to the file named on the first line and igeom is attached to the file named on the second line (names must
be ASCII with a length less than 80 characters long).

The input deck was broken up so that an automatic grid generating routine could be used to generate
coordinates, boundary conditions and element connectivities separate from ConMan. The only automatic
grid generation ConMan does is linear or bilinear interpolation which is described in the appropriate sections
of this guide.

The following sixteen cards or groups of cards are read from the iin unit (throughout this guide a “card”
will mean one line of an ASCII text file). These constitute the parameter part of the input “deck” for the
program ConMan. The format for this guide is a bold title line giving the card title followed by an italicized
line showing the order of the parameters and a listing of the parameters (with a brief explanation).

6.1 General Input File

Title Card Any descriptive character string up to 80 characters long

Global Constants Card numnp nsd ndof nelr nelz mprec iflow necho inrsts iorstr nodebn ntimvs ntseq
numeg isky nwrap

numnp total number of nodal points (integer)

nelx number of elements in the x1 (horizontal) (integer) direction
nelz number of elements in the x2 (vertical) (integer) direction
iflow data check flag (integer)

0 - check data only
1 - execute code

necho echo data flag (integer)
0 - minimum data echo (terse)

35

36 CHAPTER 6. INPUT GUIDE

1 - echo data to output file (verbose)

inrstr read restart file flag (integer)
0 - use default start (conductive)
1 - read restart file from unit 16

iorstr write restart file flag (integer)
0 - don’t write restart file
1 - write restart file to unit 17

nodebn number of edge nodes for nusselt (integer) smoother

ntimvs temperature dependent viscosity (integer) flag
0 - stiffness matrix factored once — constant viscosity
1 - Blankenbach 2a case (hardwired constants)
2 - Blankenbach 2b case (hardwired constants)
3 - temperature dependent Arrhenius law (diffusion creep) using activation energy and volume
below
4 - composite dislocation/diffusion creep (code does not currently support non-Newtonian dislo-
cation creep)
5 - rheology based on Stein and Hansen (20xx?) (currently code does not currently support
non-Newtonian dislocation creep)
nwrap number of nodes to wrap (integer)
equal to number of elements in vertical (this requires nodes must be
numbered increasing fastest in vertical direction)

itype compressible formulation (integer)
1-ALA
2 - TALA
3 - EBA
4 - BA
isolve temperature solver (integer)
1 - explicit
2 - implicit
3 - Picard

Time Sequence Card nstep accel

nstep number of time steps (integer)

accel a factor that multiplies the time step (real number)

Output Step Card nstprt tmax datasv tsave tmovie

nstprt steps between output (integer)

tmax maximum time, usually diffusion scaling (real)
datasv time interval for time series output (real)

tsave time interval for temperature/velocity output (real)
tmovis time interval for movie output (real) - not supported

Velocity Boundary Condition Flag Cards bnode enode incr (bef(i), i=1,ndof)

bnode beginning node

enode ending node

6.1. GENERAL INPUT FILE 37

incr node increment

bef(i) boundary condition flag for ith degree of freedom
0 - free slip
1 - pinned degree of freedom

00000 to end VBCF cards

Temperature Boundary Condition Flag Cards bnode enode incr bcf

bnode beginning node

enode ending node

incr node increment

bef boundary condition flag for temperature

1- fixed temperature
0000 toend TBCF cards

Nusselt Number Boundary Condition Flag Cards - Edge Nodes top and bottom rows of nodes bn-
ode enode incr

bnode beginning node
enode ending node
incr node increment

0 0 0 to end NNBCF (type a) cards

Nusselt Number Boundary Condition Flag Cards - Second Row Nodes second from top and bot-
tom rows of nodes bnode enode incr

bnode beginning node
enode ending node
incr node increment

0 0 0 to end NNBCF (type b) cards

Initial Temperature Card pert zsize zsize

pert perturbation from conductive state
xsize nondimensional length (x1 direction) of box
zsize nondimensional height (x2 direction) of box

Equation of state Card Di: T0 diff T cgamma rho0

Di Dissipation number

T surface temperature (dimensional)

diff T temperature difference across the box (dimensional)
cgamma Gruneisen parameter (non-dimensional)

rho0 reference density (non-dimensional)

Element Parameter Card - numat numsuf

numat number of material groups

numsuf number of imposed stress/flux cards

38 CHAPTER 6. INPUT GUIDE

Viscosity Card wvisc(i), i=1,numat

vise(i) preexponential viscosity coefficient for ith material group
Penalty Card alam(i), i=1,numat

alam(i) penalty parameter for ith material group

Diffusivity Card diff(i), i=1,numat

dmhu(i) internal heat source for ith material group
Activation Energy Card tcon(1,i), i=1,numat

tcon(1l,i) activation energy for ith material group for temperature dependent viscosity
(kJ/mole)

Activation Volume Card tcon(2,i), i=1,numat

tcon(2,i) activation volume for ith material group for temperature dependent viscosity
(cm3 /mole)

Viscosity Cutoff Card tcon(3,i), i=1,numat

Surface Force/Flux Cards - numsuf cards nel side fnorm ftan flux

nel element number
side side to apply force and flux
1 - bottom
2 - right side
3 - top
4 - left side
fnorm normal surface force
ftan tangential surface force
flux heat flux

The following four groups of cards are read from the igeom unit. These constitute the geometry part of the
input “deck” for the program conman. The format of this section is the same as above.

6.2. GEOMETRY INPUT FILE 39

6.2 Geometry Input File
Coordinate Group

Absolute Coordinate Card node gp (z(i,node) i=1,nsd)

node the node whose coordinates are to be specified

[y o T generation parameter for automatic generation
0 - no autogeneration
2 - generate a line using node as a starting point
4 - generate a box using node as the lower left corner

x(i,node) coordinate value in the ith spatial dimension
Corner Generation Cards - gp-1 cards node mgen (z(i,node) i=1,nsd)

node node number

mgen generation parameter
0 - don’t use this as the start of a generation sequence
1 - use this as the start of a generation sequence

x(i,node) coordinate value in the ith spatial dimension

Generation Increment Card nincl incl ninc2 inc2

nincl number of additional nodes to generate in x1 direction
incl increment of nodes in x1 direction
ninc2 number of additional nodes to generate in x2 direction

0 - if gp equals 2
inc2 increment of nodes in x2 direction
0 - if gp equals 2

00 0 0 to end coordinate group
Velocity Boundary Condition Group

Absolute Velocity Card node gp (v(i,node) i=1,nsd)

node the node whose velocities are to be specified

f=3 o T generation parameter for automatic generation
0 - no autogeneration
2 - generate a line using node as a starting point
4 - generate a box using node as the lower left corner

v(i,node) velocity value in the ith spatial dimension
Corner Generation Cards - gp-1 cards node mgen (v(i,node) i=1,nsd)

node node number

mgen generation parameter
0 - don’t use this as the start of a generation sequence
1 - use this as the start of a generation sequence

v(i,node) velocity value in the ith spatial dimension

Generation Increment Card nincl incl ninc2 inc2

nincl number of additional nodes to generate in x1 direction
incl increment of nodes in x1 direction
ninc2 number of additional nodes to generate in x2 direction

0 - if gp equals 2
inc2 increment of nodes in x2 direction
0 - if gp equals 2

40 CHAPTER 6. INPUT GUIDE

00 0 0 to end velocity group
Temperature Boundary Condition Group

Absolute Temperature Card node gp t(node)

node the node whose velocities are to be specified

f3 o T generation parameter for automatic generation
0 - no autogeneration
2 - generate a line using node as a starting point

t(node) temperature value
Corner Generation Cards - gp-1 cards node mgen t(node)

node node number

mgen generation parameter
0 - don’t use this as the start of a generation sequence
1 - use this as the start of a generation sequence

t(node) temperature value

Generation Increment Card ninc! incl ninc2 inc2

nincl number of additional nodes to generate in x1 direction
incl increment of nodes in x1 direction
ninc2 number of additional nodes to generate in x2 direction

0 - if gp equals 2
inc2 increment of nodes in x2 direction
0 - if gp equals 2

0 0 to end temperature group
Element Connectivity (ien) Generation Group

Absolution Element Card elnu ng mat no (ien(elnu,i) i=1,nen)

elnu element number

ng generation parameter
0 - no generation
1 - generate using increments from increment card

mat no. material number for this element

ien(elnu,i) global node number for the ith local node of element counterclockwise from
lower left corner

Increment Card nell incell incnl nel2 incel2 incn2

nell number of elements in x1 (horizontal) direction
incell increment of elements in x1 (horizontal) direction
incnl increment of nodes in x1 (horizontal) direction
nel2 number of elements in x2 (vertical) direction
incel2 increment of elements in x2 (vertical) direction
incn2 increment of nodes in x2 (vertical) direction

000000 to end element connectivity group

Chapter 7

Sample Input Files

The lines below are a sample 50 element by 50 element input deck for a 1 by 1 square, constant viscosity
with the Picard method. This is Blankenbach 1la:

50 x 50 el. plate problem from Blankenbach et al., 1989

#Nds X Z ck echo rrst wrst nus tdvf iwrap itype isolve
2601 50 50 1 0 0 1 102 0 0 4 3
time step information
100 1 1.0 1.0 0.50000
output information
100 100 100 100
velocity boundary condition flags: IFCMT,DELNXTLN
bnode enode incr bcfl bcf2
1 25651 51 0 1
25561 2601 1 1 0
1 51 1 1 0
51 2601 51 0 1
1 1 1 1 1
51 51 1 1 1
25561 25651 1 1 1
2601 2601 1 1 1
0 0 0 0 0
temperature boundary condition flags
1 2551 51 1
51 2601 51 1
0 0 0 0
bndy info (top - bottom rows)
1 25651 51
51 2601 51
0 0 0

bndy info (2nd from top - 2nd from bottom rows)
2 25562 51
50 2600 51

0 0 0
initial condition information
0.1 1.0 1.0 1.0

element information
2 2560044120500
viscosity
1.0e0
penalty number

41

42 CHAPTER 7. SAMPLE INPUT FILES

0.1E+08
diffusivity (always one)
1.0
Rayleigh number
1.0e+04
internal heating parameter
0.0
0.0
0.0
1.0e7

The lines below are a sample geometry file for the 50 by 50 element problem.

coordinates
1
2551
2601
51
50 5 50
0 0 0.0 0.0
velocity boundary conditions (non-zero)
0 0 0.0 0.0
temperature boundary conditions (non-zero)

=R D
O~ O
O O O O
= = O O

, O O O O

1 2 1.0
2551 0 1.0
50 51
0 0 0.0
element connectivity and material groups
1 1 1 1 52 53 2
50 50 51 50 1 1

0 0 0 0 0 0 0

Chapter 8

Output Guide

8.1 The Output Files

The 10 required output files names are taken from the names in the runfile. The execution of conman
proceeds by % conman < runfile where the runfile has a list of filenames that can be up to 80 characters
long.

The names in the runfile are attached to the following input or output files.

input

geometry

output

input restart

output restart

time series output

temperature and velocity field output
stress and viscosity field output
compressible benchmark output

geoid output

All files are ASCII files. The input and geometry files are as described in the previous section.

The output file is a formatted record of the input. If the variable necho is set to one, then values of the
coordinates and boundary conditions are output and the file can become large. Near the end of the output
file execution time is listed for various subparts of the code.

The restart input file is an input file that is used if the variable inrstr is set to one. The file is ASCII
but formatted and the format statement can be found in the file input.F. The first line contains the initial
timestep and time, the second line is a header, and the third through numnp lines contains the node,
temperature and time derivative of temperature.

The restart output file is an output file that is used if the variable iorstr is set to one. We recommend
this always be set to run. This file is overwritten every nsdprt steps and the output is written from the file
timdrv.F

The time series output file is written every time step. The values are ASCII and are heat flux at the
bottom, heat flux at the top, kinetic energy, and time. All values are dimensionless. This file is written from
the routine fluxke.F

The Temperature and velocity output file is an ASCII file written from the routine print.F. There are
two header lines that contain nsd, nelr, nelz, numnp, nstep, time. The second line labels the output and
the third through numnp lines list the node, x, z, vx, vz, and temperature values at each node. This file
is output every nsvprt steps and each successive set of values is appended to the end of the file. The unix
command split -numnp+2 tempfile can be used to split the file into files that are numnp-+2 lines long.

The stress output file is an ASCII file written from the routine prtstr which can be found in the file
stress.F. Like the temperature velocity file there are two header lines that contain nsd, nelzx, nelz, numnp,

43

44 CHAPTER 8. OUTPUT GUIDE

nstep, time. The second line labels the output and the third through numnp lines list the node, x, z, txx, tzz.
txz. p and viscosity at each node. This file is output every nsuvprt steps and each successive set of values is
appended to the end of the file. The unix command split -numnp+2 tempfile can be used to split the file
into files that are numnp+2 lines long.

The compressible benchmark output file contains time series of output requested in the benchmark paper.
The calculations are done in print compbm data.F Some of the calculations are repeated from fluxke.F
but the duplication was left in place. Both subroutines are called in output.F and one or the other could
be disabled if the user so chooses.

The geoid output file contains the horizontal coordinate, the dynamic topography, the geoid contribution
from the temperature only and the total geoid (from surface and cmb topography, and internal (i.e., tem-
perature) density contrasts). This is written from the file geoid.F. The dimensional values are hard wired
into the code and can be found at the top of geoid.F. This version of the geoid code has not been tested
with flow-through boundary conditions (i.e, nwrap = nelz). Warning. As written, the code assumes the
parameters from 7 and adjusts the viscosity as the Rayleigh number changes. It would be ideal to make the
scaling parameters input. This is left to the user community.

See Table ?7. It is best to carefully check the geoid.F source for the specific problem of interest.

The geoid output file contains additional output for the compressible case. The columns are: Rayleigh
number, Nusselt Number, Vrms, maximum surface velocity, average surface velocity, rms temperature,
volume-average viscous dissipation, ¢, and volume-average work against the gravitational potential, W.
In the ALA approximation, ¢ and W should exactly balance. This is a measure of the energy conservation
approximation.

Chapter 9

The Benchmark Cases

We provide input and geometry files for the benchmark cases described below in the directories cookbook1,
cookbook2 and cookbook3.

9.1 Cookbook 1: Blankenbach Benchmark Cases

Here we reproduce the results from ? for constant viscosity and temperature-dependent viscosity in a unit-
aspect ratio domain, with free-slip boundary conditions, heated from below and cooled from above. ConMan
results were not a part of the ? paper but results from the the grids used here were published in 7. The
constant viscosity calculations (1a, 1b, and 1c) use a Rayleigh number of 10%, 10°, and 10° respectively and
the dimensional parameters are listed in Table ?7. The time is the CPU time in seconds for the Picard
version of the code using 30 iterations (60 iterations for the temperature-dependent, 2a, problems) on a
MacBook Air with a 2.2 GHz Intel Core i7 using the gfortran compiler (6.1.0) with -O3 optimization. While
the problems in ? are specified dimensionally, the equations are solved non-dimensionally within ConMan
for numerical stability and the scaling factors are applied to the results.

The results are computed on uniformly spaced grids. The global properties of Nusselt number and
root-mean-square velocity, the topography and geoid at the left- and right-hand side of the domain are
reported, along with the extrapolated value from Christensen’s results (see ? for discussion) in Table ??
(Rayleigh number 10%), Table ?? (Rayleigh number 10°), and Table ?? (Rayleigh number 10¢). For the global
properties of Nusselt number and root-mean-square velocity, the 50 by 50 element grid are already within
1% of Christensen’s extrapolated results even for the Rayleigh number 10° calculations. The agreement for
the point values of topography and geoid are also 1% error on the 50 by 50 grid for the topography and
geoid for the 50 by 50 element grid for the Rayleigh number 10° calculations (Table ??). For the 200 by 200
grid, all values converge to Christensen’s extrapolated results.

Parameter Symbol Value
depth of domain d 105 m
gravitational acceleration g 10 m/s?
temperature difference AT 1000 K
density p 4000 kg m—3
thermal diffusivity K 1.0 x 1076 m? 7!
coefficient of thermal expansion « 2.5 x 107°
kinematic viscosity i 2.5 x 10! Pa s (1a)

2.5 x 1017 Pa s (1c)

(1
2.5 x 10*® Pa s (1b)

(1
gravitational constant G 6.673 x 1011

Table 9.1: Mantle parameters for Blankenbach constant viscosity benchmarks.

45

46 CHAPTER 9. THE BENCHMARK CASES

Grid V,.,s Nusselt No. Topoy, Topog Geoid;, Geoidg Time (sec)

50 42.997 4.887 2261.956 -2911.473 55.346 -63.178 2.98
100 42.947 4.885 2256.094 -2905.356 54.957 -62.765 16.05
200 42910 4.885 2254.541 -2903.764 54.856 -62.658 182.96

FCeqt 42.865 4.884 2254.021 -2903.221 54.822 -62.622
tChristensen’s extrapolated values.

Table 9.2: 7 Benchmark la: Steady State, 2D, constant viscosity convection in a 1 by 1 box with Rayleigh
number 10* using ConMan.

Grid Vims Nusselt No. Topor, Topogr Geoid;, Geoidgp Time (sec)

50 195.165 10.546 1482.778 -2014.228 28.846 -33.104 2.95
100 194.253 10.539 1467.169 -2008.138 28.034 -32.327 14.74
200 193.767 10.536 1462.487 -2005.474 27.789 -32.099 182.83

TCert 193.214 10.534 1460.986 -2004.205 27.703 -32.016
tChristensen’s extrapolated values.

Table 9.3: 7 Benchmark 1b: Steady State, 2D, constant viscosity convection in a 1 by 1 box with Rayleigh
number 10° using ConMan.

Grid Vims Nusselt No. Topoy, Topog Geoid;, Geoidg Time (sec)

50 850.794 21.864 941.607 -1301.980 14.958 -16.678 4.04
100 841.722 22.023 945.108 -1290.926 14.109 -15.632 24.10
200 837.643 21.980 936.439 -1285.756 13.654 -15.204 289.96

$Cest 833.989 21.997 931.962 -1283.813 13.452 -15.034
jChristensen’s extrapolated values.

Table 9.4: 7 Benchmark 1c: Steady State, 2D, constant viscosity convection in a 1 by 1 box with Rayleigh
number 10° using ConMan.

9.2. COOKBOOK 2: CONSTANT VISCOSITY DRIVEN SLAB PROBLEMS FROM VAN KEKEN ET AL. [2008]47

Grid V,ms Nusselt No. Topoy, Topog Geoid;, Geoidg Run Time (sec)

50 497.239 9.993 1041.464 -4012.790 18.584 -55.084 15.56
100 487.755 10.083 1017.502 -4081.259 17.657 -54.790 173.33
200 483.714 10.069 1012.217 -4094.521 17.417 -54.654 2441.90

TCert 480.433 10.066 1010.925 -4098.073 17.343 -54.598
tChristensen’s extrapolated values.

Table 9.5: ? Benchmark 2a: Steady State, 2D, temperature-dependent viscosity convection (b=6.907755279)
in a 1 by 1 box with Rayleigh number 10* using ConMan.

In addition, we reproduce the results from ? for temperature-dependent viscosity in a unit-aspect ratio
domain, with free-slip boundary conditions, heated from below and cooled from above (case 2a). For this
problem, the temperature-dependence of viscosity is given by

n(T) = n, exp {— ln{l()OO}ATT} (9.1)

where 77, = 2.9 x 10'? and AT = 1000.0. The other scaling parameters are the same as Table ??. The results
for a Rayleigh number of 10* are presented in Table ??. Here, once again, the global properties of Nusselt
number and root-mean-square velocity for the 50 by 50 grid are within 1-2% of Christensen’s extrapolated
results; however, in contrast to the constant viscosity cases, the values of topography and geoid in the corners
differ from Christensen’s extrapolated results by as much as 3% for topography and 7% for geoid on the 50
element by 50 element grid. Again, by the 400x400 grid, the values are well within 0.5%.

The benchmark calculations can be run by typing Run Cookbook1.sh and the tables can then be created
using Make table.sh. You may need to edit Make table.sh to specify the location of latex and dvips if they
are not already in your path.

9.2 Cookbook 2: Constant Viscosity Driven Slab Problems from
van Keken et al. [2008]

The geometry used here is based on the subduction zone benchmark described in ?. The results presented
here differ slightly from the published results using ConMan because in that work a deformed mesh was
used. Here we use a regular mesh. While we have never fully investigated the reason behind this, we suspect
that element locking (?, pp. x-yy) is a significant problem because the element geometry was aligned so
that for the element in the corner, one edge of the element was along the slab and the other edge of the
element was aligned with the bottom of the lithosphere (at 50 km depth) which was a specified no-slip
condition. Thus three of the four nodes of the element were boundary conditions. The benchmarks require
using a discontinuous velocity field (split nodes along the fault), which turns out to be critical to match the
benchmark results. It also uses a linear ramp in slab velocity from zero at the corner (50 km, 50 km) to
vslab 6 km down the slab. This was done in order to minimize the impact of the pressure singularity at the
corner of the wedge.

In the subdirectory Cookbook2 I include 66x60, 132x120, 198x180, 264x240, and 330x300 element grids
for three types of constant viscosity problems. It is not possible to use a 6 km velocity ramp along the slab,
as required by the benchmark, because the element diagonal lengths are 14 km for the 66x60 element grid,
7 km for the 132x120 element grid, 4.7 km for the 198x180 element grid, 3.5 km for the 264x240 element
grid and 2.8 km for the 330x300 element grid. If a user wishes to explore these problems further, they might
consider modifying the mesh to create a region near the tip of the wedge that is more highly refined with a
spacing that would allow for a 6 km ramp. The A series of calculations use the analytic Batchelor solution
in the mantle wedge. As such, these only test advection. The B series of calculations use the analytic
Batchelor solution at the boundaries of the domain where mantle wedge material flows in or out. The C
series of calculations use natural boundary conditions along the boundaries of the domain. The 330x300 grid
computations take approximately 5 minutes each.

48 CHAPTER 9. THE BENCHMARK CASES

600

550

450

=L 400

0 100 200 300 400 500 600 =
Distance 0 50 100 150 200

Distance

BT | | .

0 200 400 600 800 1000 1200 1400

Figure 9.1: Thermal structure for the mantle wedge problem in Cookbook 2 example for 330 by 300 element
grid with imposed Batchelor wedge inflow/outflow boundary conditions. Compare with ? Figure 2.

For the grids provided, the resulting thermal structure should look like Figure ??. There are two key
changes: 1) the value of the velocity boundary condition flag is set to 2, instead of 1 for nodes that the
user wants the code to use the imposed Batchelor solution (?); 2) the problem requires a fault, which is
implemented here in subduct.src/fault.F. The fault comes into play in the advection of the temperature
field. The fault is assumed to cross the element from the upper left hand corner to the lower right hand
corner. This works because in the benchmark problem the fault is at 45 degrees and this problem uses square
elements. For nodes or below on the fault (footwall) the velocities at the lower left, lower right and upper
left Gauss points are set to vslab and the upper right Gauss point is set to zero. For the upper triangular
part of the fault (hanging wall) the velocities of the lower right and upper left Gauss points, which are on
the fault, are now set to zero (the hanging wall sees no fault movement). Subroutine fault.F is called in
form temp matrix.F. The Batchelor solution is calculated in subduct.src/batchelor.F and assumes
the specific grid geometry used in these input files. If the user wishes to modify the grid, they will need to
hack the batchelor.F and fault.F files appropriately.

Imposing the Batchelor solution could also be accomplished by setting the velocity boundary condition
flags to 1 and in the geometry file setting the values of the velocity boundary condition to be the velocities
from the Batchelor solution.

The subduction zone thermal benchmark requests output values specified at specific grid points and the
user would be well advised to carefully read ? for details. From 7, to compare model results each group
contributed the temperature field as discreted values Tj; on an equidistant grid with 6 km spacing, which is a
111x 101 matrixz stored row-wise starting in the top left corner. From this grid we have extracted the following
measurements for direct comparison: (1) the temperature Th1 11 which is at coordinates (60, 60 km) and just
down-stream from the corner point. Further, users are requested to provide the L2 norm of the slab-wedge
interface temperature between 0 and 210 km depth defined by

||TslabH =

9.2. COOKBOOK 2: CONSTANT VISCOSITY DRIVEN SLAB PROBLEMS FROM VAN KEKEN ET AL. [2008]49

Case Grid T |Tsianl] ||Twedgel] Time (sec)
la 66x60 226.61 463.77 804.32 2.21
la 132x120 346.51 488.73 827.83 12.90
la 198x180 364.19 499.35 835.75 38.74
la 264x240 402.26 506.77 838.02 132.31
la 330x300 386.77 505.58 837.93 300.57
1b 66x60 193.49 381.30 686.77 2.50
1b 132x120 262.84 438.60 770.27 10.22
1b 198x180 288.47 463.42 797.87 44.29
1b 264x240 415.82 511.40 840.80 135.43
1b 330x300 387.50 500.64 833.42 321.01
lc 66x60 192.10 372.87 666.34 2.45
lc 132x120 260.88 433.84 759.46 10.30
lc 198x180 286.81 459.99 790.22 44.88
lc 264x240 414.05 509.23 836.24 144.93
lc 330x300 385.94 498.59 828.96 324.21

Table 9.6: Slab thermal structure results from ? benchmarks.

and the L2 norm of the temperature of the mantle wedge from 54 to 120 km depth,

||Twedge” =

These quantities are reported in Table ??7. Comparing Table ?? with the results in ?, few observations can
be made. First, the results for 111, ||Tsiab||; || Twedge || approach the result reported in ? for ConMan and are
within the range of values reported by the other codes (379.87 < T1; < 396.3, 502.26 < ||Tsap|| < 520.14,
and 825.89 < ||Twedge|| < 866.52 and for la. For 1b and lc, the wedge values are somewhat lower than
most codes, yet are inline with the 1la result. Previously the VT result (i.e., ConMan) was the lowest in the
range of reported values, thus the results here are actually an improvement over the results reported in the
benchmark. The results reported in ? used an irregular grid and the fault implementation was not as clean
as the implementation here. The next thing to note is that the low-resolution grid (66x60) results are more
than 100 degress lower than the most refined grid for 77; but the differences are less pronounced for ||Tsqp]
and || Tcagel |

It is instructive to look at the temperature along the top of the slab, plotted in Figure ?7. It is notable
that for the coarse grids (red, greeen, and blue lines), the imposed Batchelor velocity solution (solid lines,
‘a’ cases), which is the true solution, and the calculations with the Batchelor boundary conditions (dotted
lines,'b’ cases) or natural boundary conditions (dashed lines, ‘c’ cases) are far apart. With increasing grid
resolution, the difference between the imposed Batchelor velocity solution and the numerical velocity solution
approach each other.

On the coarse grids, the under and over-shoot of the temperature (i.e., the saw-tooth pattern), is char-
acteristic of an under-resolved solution. SUPG elements can only do so much. This behavior disappears as
the grid is refined.

To run the benchmark calculations use the scripts run 66x60.sh, run 132x120.sh, run_198x180.sh,
run_ 264x240.sh, and run_330x300.sh in the Cookbook2 subdirectory. The scripts will run the three prob-
lems on the grid described in the script name and create plots (postscript) of the temperature and velocity
fields using GMT. (The plotting script is written for GMT5.) If you do not have GMT on your system you can
comment out the lines that contain the script plot temp GMT Then the script Make table.sh will create
a latex table of the results which should be identical to Table ??. This script also uses GMT for the analysis.
The resulting file with the table will be vanKeken08.ps You may need to edit Make table.sh to specify the
location of latex and dvips if they are not already in your path. Figure ?? can be reproduced by running the
script run_330x300.sh and then Make vanKeken08 fig2.sh. The resulting file will be vanKeken08 fig2.ps

50 CHAPTER 9. THE BENCHMARK CASES

600 1 | | 1

550

500

450

Temperature (C)
8 & 8
o (=] o

150

100 ~

50

0 25 50 75 100 1 2|5 150 1 7:’5 200
Along Slab Distance (km)

Figure 9.2: Temperature along the top of the slab for the calculations in Table ??. Solid lines are for ‘a’
cases, dotted lines are for ‘b’ cases and dashed lines are for ‘c’ cases. The red lines are 66x60 element grids,
the green lines are 132x120 element grids, the blue lines are 198x180 element grids, the orange lines are
264x240 element grids, and the black lines are for 330x300 element grids.

9.3. COOKBOOK 3: COMPRESSIBLE BENCHMARK CASES FROM KING ET AL. [2010] ol

To reproduce the plot of slab surface temperature, Figure 77, run Make top of slab.sh. The resulting
postscript file will be tos.ps.

9.3 Cookbook 3: Compressible Benchmark Cases from King et al.
[2010]

The benchmark problems are in unit-aspect ratio domain, with free-slip top, bottom, and sides walls. The
total temperature is fixed at the top T'(z = 0) = 0 and bottom T'(z = 1) = 1 and the side-walls have no flux
boundary conditions. We consider Bousinessq (BA), extended Bousinessq (EBA), truncated anelastic liquid
(TALA) and anelastic liquid (ALA) approximations. All thermodynamic properties are fixed constants. The
Rayleigh number, Ra, ranges from 10* — 106 and we vary the Dissipation number, Di, from 0 to 2. All of the
cases in the test suite use 64 by 64 uniformly spaced elements. All grids used in the benchmark are in the
range of 60-128 elements (or nodes) per side. We compared some solutions on more refined grids to check
the convergence of the methods and error; however, the grids here are sufficient to resolve the problems in
this study. The participants were asked to report surface heat flux (Nusselt number) and rms velocity for
all cases and in addition, the viscous dissipation and work done for the compressible cases.

The Nusselt number is a ratio of the average surface heat flow from the convective solution to the heat
flow due to conduction and is calculated by

1 MOT ()2 = Ziop)
Nu= — ? °p 4
YT TNAT /0 9z 4, (94)

where 0 and A are the left and right coordinates of the domain, respectively, 2oy is the top of the domain
and, AT is the temperature contrast across the domain. The rms velocity is given by

1 Ztop A 1
Vins = 7/ / w2+ w2 de d. 9.5
)\(Ztop - Zbot) 2ot J0O [()] ()

In addition to the set of calculations described above, we added a series of temperature-dependent cases
with a viscosity function

n(T) = noexp [~BT], (9.6)

where 7, = 1, T is normalized by AT = 3000.0 and f = In(1000), following problem 2a in ?. These
calculations are in a unit-aspect ratio domain, with free-slip top, bottom, and sides walls. Participants were
asked to provide ALA results if possible and if not, TALA results.

In the directory Cookbook3 there is a shell script RUN_TEST SUITE which runs a series of problems
from the 2010 compressible benchmark paper. Each problem is in a subdirectory named in such a way that
the problem is fairly obvious. Each of the constant viscosity problems runs in under 10 minutes and many
run in under 2 minutes. The temperature-dependent problems run in under 2 hours. The entire test suite
will run overnight on most systems (if you are impatient you can move the temperature-dependent problem
directories to a name that starts with something other than ‘test’) and the script will avoid running these.
After the test suite is finished you can run Make table.bash (this assumes that you have latex and dvips
installed). This will generate a table with your results and the expected values, and should look like the
table below. You can view the resulting table on your system by typing <view> blankenbach.ps, where
<view> is the software you use to view postscript files on your system.

9.3.1 Boundary Conditions for Compressible Convection

It is important to point out that boundary conditions for temperature require special care when compared
with the more commonly used Bousinessq approximation. In the description of this problem, the total
temperature jump across the model is AT, which is comprised of both a contribution from the reference
state T and the potential temperature 7”. The non-dimensional temperature at the surface, T, is given by
Tsurf/AT,. Because equation ?7? is written in terms of the potential temperature, 7" the boundary conditions
for equation ?? are, T'(z = 0) = 0 and T"(z = 1) = 1 —exp(D1i). This requires care when defining the Nusselt
number, as discussed above. The different codes used different formulations (e.g., CU formulation is based

52 CHAPTER 9. THE BENCHMARK CASES

on total temperature, while the VT and UM formulations are based on potential temperature). We do not
internally modify the basal boundary condition in this formulation and the user must specify the boundary
condition as Ty, = 1 — exp(D3) in the geom. file.

This table is a sample of the results from the test suite in Cookbook 3. For some of the cases, the results
do not match the 7 results exactly. Additionally, ? only report top Nusselt number and only report the
temperature dependent results for the ALA case. Here we report both the top and bottom Nusselt numbers,
which provides a measure of the energy conservation.

There are several potential reasons for the disagreement: 1) there may have been rounding of some of
the values reported in the supplemental table; 2) the results were computed from four separate versions
of ConMan, one for each approximation, in the merged version the order of some of the operations differ
substantially from the separate versions; 3) the small differences may reflect the cutoff at which the solution
was judged to have converged; 4) for the Ra = 10° case a refined grid was likely used. The results here are
consistent with those in Cookbook 1 and demonstrate that a substantially more refined grid is needed to
achieve the rms velocity reported in ? for this Rayleigh number.

The results here are consistent with the variations between codes reported in the benchmark paper and
to the best of our knowledge are correct. There is a second script RUN PARALLEL.sh which checks for the
number of CPUs on a multi-core system and runs up to that number of jobs simultaneously. The steady-
state diagnostics (v,ms, top and bottom Nusselt numbers, average temperature and surface velocity can be
compared with the ConMan results in ? by running the script Make table.sh. The script assumes that
latex and dvips are in your path and will produce a file named benchmark.ps. An example of benchmark.ps
is shown below. The test results in Table 7?7 were computed on a MacBook Air with a 2.2 GHz Intel Core
i7 processor running 10.11.6 (El Capitan) using gfortran (6.1.0) with compiler flags -O3.

9.3. COOKBOOK 3: COMPRESSIBLE BENCHMARK CASES FROM KING ET AL. [2010]

Problem Vims Nu Bot Nu Top aveT Vsurf
Blankenbach la explicit 42.979 4.886 4.886 0.500 41.431
Blankenbach 1a Picard 42.979 4.886 4.886 0.500 41.431
King et al. [2010] 42.900 - 4.890 0.500 41.400
Blankenbach 1b explicit 194.768 10.540 10.540 0.500 198.282
Blankenbach 1b picard 194.768 10.540 10.540 0.500 198.282
King et al. [2010] 195.080 - 10.540 0.500 198.280
Blankenbach 1c explicit 846.728 22.017 22.017 0.500 884.520
Blankenbach 1c picard 846.729 22.017 22.017 0.500 884.520
King et al. [2010] 838.024 - 22.020 0.500 884.520
Blankenbach 2a explicit 493.066 10.076 10.071 0.741 98.760
Blankenbach 2a Picard 493.067 10.076 10.071 0.741 98.760
King et al. [2010] - - - - -
EBA cv Di=0.25 explicit 38.543 4.096 4.096 0.491 36.599
EBA cv Di=0.25 Picard 38.543 4.096 4.096 0.491 36.599
King et al. [2010] 38.476 - 4.097 0.491 36.598
EBA cv Di=1.0 explicit 24.242 2.194 2.194 0.467 22.242
EBA c¢v Di=1.0 Picard 24.243 2.194 2.194 0.467 22.243
King et al. [2010] 24.232 - 2.194 0.467 22.243
EBA td Di=0.25 explicit 374.401 7.629 7.616 0.692 81.793
EBA td Di=0.25 Picard 374.401 7.629 7.616 0.692 81.795
King et al. [2010] - - - - -
TALA cv Di=0.25 explicit 40.163 4.426 4.424 0.513 39.301
TALA cv Di=0.25 Picard 40.163 4.426 4.425 0.513 39.301
King et al. [2010] 40.200 - 4.430 0.513 39.300
TALA cv Di=1.0 explicit 26.072 2.567 2.505 0.509 26.432
TALA cv Di=1.0 Picard 26.072 2.567 2.505 0.509 26.432
King et al. [2010] 26.100 - 2.570 0.509 26.400
TALA td Di=0.25 explicit 383.222 7.813 7.740 0.706 82.928
TALA td Di=0.25 Picard 383.222 7.813 7.740 0.706 82.928
King et al. [2010] - - - - -
ALA cv Di=0.25 explicit 40.043 4.414 4.415 0.515 38.837
ALA cv Di=0.25 Picard 40.043 4.414 4.415 0.515 38.837
King et al. [2010] 40.095 - 4.414 0.515 38.837
ALA cv Di=1.0 explicit 24.983 2472 2.473 0.510 24.401
ALA cv Di=1.0 Picard 24.983 2472 2.473 0.510 24.402
King et al. [2010] 25.016 - 2.472 0.510 24.401
ALA td Di=0.25 explicit 380.059 7.735 7.683 0.707 81.095
ALA td Di=0.25 Picard 380.058 7.735 7.683 0.707 81.094
King et al. [2010] 381.690 - 7.710 0.707 81.090

Table 9.7: Steady State, 2D, convection in a 1 by 1 box ? benchmarks.

93

o4

CHAPTER 9. THE BENCHMARK CASES

Appendix A

License

GNU GENERAL PUBLIC LICENSE Version 2, June 1991. Copyright (C) 1989, 1991 Free
Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, M A 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software —
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps:

1. Copyright the software, and

2. Offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

55

56 APPENDIX A. LICENSE

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS
FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program" be-
low refers to any such program or work, and a "work based on the Program" means either the Program
or any derivative work under copyright law: that is to say, a work containing the Program or a portion
of it, either verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification.") Each licensee is addressed as
"you."

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(c¢) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

o7

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

(¢) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automati-
cally receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

o8

10.

APPENDIX A. LICENSE

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version," you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11.

12.

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

99

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found. For example:

One line to give the program’s name and a brief idea of what it does. Copyright A@ (year) (name
of author)

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright A@ year name of author Gnomovision comes with ABSO-
LUTELY NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they
could even be mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which
makes passes at compilers) written by James Hacker.

(signature of Ty Coon)
1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

60

APPENDIX A. LICENSE

Bibliography

G.K. Batchelor. An introduction to fluid dynamics. Cambridge University Press, New York, NY, 1967.

B. Blankenbach, F. Busse, U. Christensen, L. Cserepes, D. Gunkel, U. Hansen, H. Harder, G. Jarvis, M. Koch,
G. Marquart, D. Moore, P. Olson, H. Schmeling, and T. Schnaubelt. A benchmark comparison for mantle
convection codes. Geophys. J. Int., 98:23-38, 1989.

U.R. Christensen and D.A. Yuen. Layered convection induced by phase transitions. J. Geophys. Res., 90:
10,291-10,300, 1985.

J.M. Hewitt, D.P. McKenzie, and N.O. Weiss. Dissipative heating in convective flows. J. Fluid Mech., 68:
721-738, 1975.

T. J R Hughes and A. Brooks. Multi-dimensional upwind scheme with no crosswind diffusion. American
Society of Mechanical Engineers, Applied Mechanics Division, AMD, 34, 12 1979. ISSN 160-8835.

T.J.R. Hughes. The Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

T.J.R. Hughes, W.K. Liu, and A. N. Brooks. Finite element analysis of incompressible viscous flows by the
penalty function formulation. J. Comput. Phys., 30:1-60, 1979.

T.J.R. Hughes, L.P. Franca, G.M. Hulbert, Z. Johan, and F. Shakib. The Galerkin/least-squares method
for advective-diffusive equations. In T.E. Tezduyar, editor, Recent developments in computational fluid
dynamics, volume 95, pages 75-99. American Society of Mechanical Engineers, Applied Mechanics Division,
AMD, 1988.

J. Ita and S.D. King. Sensitivity of convection with an endothermic phase-change to the form of governing
equations, initial conditions, boundary conditions, and equation of state. J. Geophys. Res., 99:15,919—
15,938, 1994.

G.T. Jarvis and D.P. McKenzie. Convection in a compressible fluid with infinite prandtl number. J. Fluid
Mech, 96:515-583, 1980.

S. D. King. On topography and geoid from 2-D stagnant lid convection calculations. Geochem., Geophys.,
Geosys., 10(Q03002), 2009. doi: 10.1029,/2008GC002250.

S. D. King and B. H. Hager. The relationship between plate velocity and trench viscosity in Newtonian and
power-law subduction calculations. Geophys. Res. Lett., 17:2409-2412, 1990.

S. D. King, A. Raefsky, and B. H. Hager. Conman: vectorizing a finite element code for incompressible
two-dimensional convection in the Earth’s mantle. Phys. Earth Planet. Inter., 59:195-207, 1990.

S. D. King, C. Lee, P. E. van Keken, W. Leng, S. Zhong, E. Tan, M. Gurnis, N. Tosi, and M. C. Kameyama.
A community benchmark for 2D Cartesian compressible convection in the Earth’s mantle. Geophys. J.
Int., 180:73-87, 2010. doi: 10.1111/j.1365-246X.2009.04413.x.

C. Lee and S. D King. Effect of mantle compressibility on the thermal and flow structures of the subduction
zones. Geochemistry, Geophysics, Geosystems, 10(1), 2009.

61

62 BIBLIOGRAPHY

W. Leng and S. Zhong. Viscous heating, adiabatic heating and energetic consistency in compressible mantle
convection. Geophys. J. Int., 173:693-702, 2008.

D. S. Malkus and T.J.R. Hughes. Mixed finite element methods - reduced and selective integration techniques:
A unification of concepts. Computer Methods in Applied Mechanics and Engineering, 15(1):63-81, 1 1978.
ISSN 0374-2830. doi: 10.1016,/0045-7825(78)90005-1.

C. Stein and U. Hansen. Plate motions and the viscosity structure of the mantle-insights from numerical
modelling. Earth Planet. Sci. Lett., 272:29-40, 2008.

B. J. Travis, C. Anderson, J. Baumgardner, C. W. Gable, B. H. Hager, R. J. O’Connell, P. Olson, A. Raefsky,
and G. Schubert. A benchmark comparison of numerical methods for infinite Prandtl number thermal
convection in two-dimensional Cartesian geometry. Geophys. Astrophys. Fluid Dyn., 55:137-160, 1990.
doi: 10.1080,/03091929008204111.

P.E. van Keken, C. Currie, S.D. King, M.D. Behn, A. Canioncle, J. He, R.F. Katz, S.-C. Lin, E.M. Parmen-
tier, M. Spiegelman, and K. Wang. A community benchmark for subduction zone modeling. Phys. Farth
Planet. Inter., 171:187-197, 2008.

S. Zhang and D.A. Yuen. Various influences on plumes and dynamics in time-dependent, compressible mantle
convection in 3-d spherical shell. Phys. Farth Planet. Inter., 94:241-267, 1996.

